Câu hỏi:

13/02/2023 1,151

Nếu mỗi cạnh đáy của hình chóp tam giác giảm đi một nửa và chiều cao của hình chóp tăng lên gấp đôi thì thể tích của hình chóp đó

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

* Giả sử hình chóp \(S.ABC\) có chiều cao là \(SH\).

 Gọi hình chóp \(S'.A'B'C'\) sau khi thay đổi có chiều cao là \(S'H'\).

* Ta có: \(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}} = \frac{1}{2}\) và \(S'H' = 2SH\).

\( \Rightarrow \Delta A'B'C' \sim \Delta ABC\) \( \Rightarrow {S_{\Delta A'B'C'}} = {\left( {\frac{1}{2}} \right)^2}.{S_{\Delta ABC}}\)

* Khi đó: \({V_{S'.A'B'C'}} = \frac{1}{3}.{S_{\Delta A'B'C'}}.S'H'\)

 \( = \frac{1}{3}.\left( {\frac{1}{4}{S_{\Delta ABC}}} \right).\left( {2SH} \right) = \frac{1}{2}\frac{1}{3}{S_{\Delta ABC}}.SH = \frac{1}{2}.{V_{S.ABC}}\)

Kết luận: Thể tính của khối chóp \(S.ABC\) giảm đi một nữa.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

 Media VietJack

\(\Delta ABC\) vuông cân tại \(A\) nên \(AB = AC = a\) \( \Rightarrow \) diện tích \(\Delta ABC\) là :\({S_{\Delta ABC}} = \frac{1}{2}{a^2}\)
\(SA \bot (ABC)\), \(SA = a\)
Thể tích hình chóp \(S.ABC\) là: \({V_{S.ABC}} = \frac{1}{3}.\)\({S_{\Delta ABC}}\).\(SA = \)\(\frac{1}{3}\).\(\frac{1}{2}{a^2}\).\(a\)=\(\frac{{{a^3}}}{6}\)

Lời giải

Lời giải

Ta có:

* \(4a + 2\pi r = 60\) \( \Leftrightarrow \,\,\,\pi r = 30 - 2a\)

Điều kiện: \(0 < 4a < 60\,\,\, \Leftrightarrow \,\,0 < a < 15\).

* Tổng diện tích của hình vuông và hình tròn:

 \(S = {a^2} + {r^2}\pi \)\( = {a^2} + \frac{{{{\left( {30 - 2a} \right)}^2}}}{\pi } = \frac{1}{\pi }\left[ {\left( {\pi + 4} \right){a^2} - 120a + 900} \right]\)

* Xét \(f(a) = \left( {\pi + 4} \right){a^2} - 120a + 900\) với \(a \in \left( {0,\,15} \right)\)

 \(f(a)\) đạt giá trị nhỏ nhất tại \(a = \frac{{120}}{{2\left( {\pi + 4} \right)}} = \frac{{60}}{{\pi + 4}} \in \left( {0,\,15} \right)\).

* \(S\) đạt giá trị nhỏ nhất khi \(a = \frac{{60}}{{\pi + 4}}\).

 \( \Rightarrow \,\,\,\pi r = 30 - 2.\frac{{60}}{{\pi + 4}} = \frac{{30\pi }}{{\pi + 4}}\) \( \Rightarrow \,\,\,r = \frac{{30}}{{\pi + 4}}\)

* Khi đó: \(\frac{a}{r} = \frac{{60}}{{\pi + 4}}:\frac{{30}}{{\pi + 4}} = 2\).

            Kết luận: \(\frac{a}{r} = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP