Câu hỏi:

14/02/2023 237 Lưu

Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:

Media VietJack

Biết \(f\left( 0 \right) = 0\), số nghiệm thuộc đoạn \(\left[ { - \frac{\pi }{6};\frac{{7\pi }}{3}} \right]\) của phương trình \(f\left( {f\left( {\sqrt 3 \sin x + \cos x} \right)} \right) = 1\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Lời giải
* Xét \(g(x) = f\left( {f\left( {\sqrt 3 \sin x + \cos x} \right)} \right)\) với \(x \in \left[ { - \frac{\pi }{6};\frac{{7\pi }}{3}} \right]\)
* Đặt \(u(x) = \sqrt 3 \sin x + \cos x = 2\cos \left( {x - \frac{\pi }{3}} \right)\)
\( \Rightarrow \,\,\,u'(x) = - 2\sin \left( {x - \frac{\pi }{3}} \right)\); \(u'(x) = 0\,\,\,\, \Rightarrow \,\,\,x \in \left\{ {\frac{\pi }{3},\,\frac{{4\pi }}{3},\,\frac{{7\pi }}{3}} \right\}\)
* Đặt \(v(x) = f\left[ {u(x)} \right]\) \( \Rightarrow \,\,\,v'(x) = u'(x).f'\left[ {u(x)} \right]\)
 \(g(x) = f\left( {v(x)} \right)\) \( \Rightarrow \,\,\,g'(x) = v'(x).f'\left[ {v(x)} \right]\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

 Media VietJack

\(\Delta ABC\) vuông cân tại \(A\) nên \(AB = AC = a\) \( \Rightarrow \) diện tích \(\Delta ABC\) là :\({S_{\Delta ABC}} = \frac{1}{2}{a^2}\)
\(SA \bot (ABC)\), \(SA = a\)
Thể tích hình chóp \(S.ABC\) là: \({V_{S.ABC}} = \frac{1}{3}.\)\({S_{\Delta ABC}}\).\(SA = \)\(\frac{1}{3}\).\(\frac{1}{2}{a^2}\).\(a\)=\(\frac{{{a^3}}}{6}\)

Lời giải

Lời giải

Ta có:

* \(4a + 2\pi r = 60\) \( \Leftrightarrow \,\,\,\pi r = 30 - 2a\)

Điều kiện: \(0 < 4a < 60\,\,\, \Leftrightarrow \,\,0 < a < 15\).

* Tổng diện tích của hình vuông và hình tròn:

 \(S = {a^2} + {r^2}\pi \)\( = {a^2} + \frac{{{{\left( {30 - 2a} \right)}^2}}}{\pi } = \frac{1}{\pi }\left[ {\left( {\pi + 4} \right){a^2} - 120a + 900} \right]\)

* Xét \(f(a) = \left( {\pi + 4} \right){a^2} - 120a + 900\) với \(a \in \left( {0,\,15} \right)\)

 \(f(a)\) đạt giá trị nhỏ nhất tại \(a = \frac{{120}}{{2\left( {\pi + 4} \right)}} = \frac{{60}}{{\pi + 4}} \in \left( {0,\,15} \right)\).

* \(S\) đạt giá trị nhỏ nhất khi \(a = \frac{{60}}{{\pi + 4}}\).

 \( \Rightarrow \,\,\,\pi r = 30 - 2.\frac{{60}}{{\pi + 4}} = \frac{{30\pi }}{{\pi + 4}}\) \( \Rightarrow \,\,\,r = \frac{{30}}{{\pi + 4}}\)

* Khi đó: \(\frac{a}{r} = \frac{{60}}{{\pi + 4}}:\frac{{30}}{{\pi + 4}} = 2\).

            Kết luận: \(\frac{a}{r} = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP