Câu hỏi:

13/02/2023 29,398

Cho hàm số y=ax+bcx+d  có đồ thị như trong hình bên dưới. Biết rằng a là số thực dương, hỏi trong các số có tất cả bao nhiêu số dương?

 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn B

Nhìn vào đồ thị ta thấy

· Tiệm cận ngang của đồ thị hàm số là y=ac  nằm phía trên trục hoành nên        ac>0a, c  cùng dấu.

· Tiệm cận đứng của đồ thị hàm số là x=dc  nằm bên trái trục tung nên dc<0dc>0d, c  cùng dấu.

· Giao điểm của đồ thị và trục tung nằm bên dưới trục hoành nên bd<0b, d  trái dấu.

a>0c>0, d>0, b<0 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

· Vì limx±5x24x1x21=limx±x254x1x2x211x2=limx±54x1x211x2=5  nên đồ thị hàm số có một tiệm cận ngang y=5 .

· Vì limx1y=limx15x24x1x21=limx15x+1x1x+1x1=limx15x+1x+1=62=3  nên x=1 không là tiệm cận đứng của đồ thị hàm số.

·limx1+y=limx1+5x24x1x21=limx1+5x24x1x+1x1=limx1+1x+1.5x24x1x1

Mà:limx1+1x+1=+limx1+5x24x1x1=4<0  nên limx1+y= .

limx1y=limx15x24x1x21=limx15x24x1x+1x1=limx11x+1.5x24x1x1

   Mà: limx11x+1=limx15x24x1x1=4<0  nên limx1y=+ .

Do đó, đồ thị hàm số có một tiệm cận đứng x=-1 .

Tổng cộng đồ thị hàm số có 2 tiệm cận.

Lời giải

a)

Gọi x (m)2x (m)  , h (m)  lần lượt là chiều rộng, chiều dài, chiều cao của bể (x>0, h>0)  .

Tổng diện tích các mặt của bể: 2(xh+2xh)+2x2=6xh+2x2=6,7 h=6,72x26x .

Vì h>0  nên x<6,72 .

Thể tích bể là Vx=6,7x2x33, x0;6,72 .

Suy ra V'x=6,76x23, x0;6,72

Cho V'x=06,76x23=0x=6,76  (nhận);V6,761,57 .

Bảng biến thiên

a) Ông An dự định sử dụng hết 6,7m^2 kính để làm một bể bằng kính có dạng hình hộp chữ nhật không nắp, (ảnh 1)
Vậy bể cá có dung tích lớn nhất bằng 1,57m3 .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay