Câu hỏi:

14/02/2023 2,067

Cho lăng trụ đứng ABC. A’B’C’ có đáy ABC là tam giác vuông tại A với \(AC = a\sqrt 3 \) . Biết BC’ hợp với mặt phẳng (AA’C’C) một góc 300 và hợp với mặt phẳng đáy góc \(\alpha \) sao cho \(\sin \alpha = \frac{{\sqrt 6 }}{4}\) . Gọi M, N lần lượt là trung điểm cạnh BB’ và A’C’. Khoảng cách MN và AC’ là :

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Lời giải
Chọn A

 Media VietJack

+) Ta có :\(\left( {BC',(AA'C'C)} \right) = \widehat {BC'A} = {30^0}\)
\(\left( {BC',(ABC)} \right) = \widehat {C'BC} = \alpha \)
+) Đặt \(AB = x \Rightarrow BC = \sqrt {3{a^2} + {x^2}} \) ,
\(CC' = BC.\tan \alpha = \sqrt {\frac{{3({x^2} + 3{a^2})}}{5}} \)
\(AC' = AB.\cot {30^0} = x\sqrt 3 \)
Ta có : \(A{C^2} + CC{'^2} = AC{'^2} \Rightarrow x = a\sqrt 2 \Rightarrow CC' = a\sqrt 3 ,AC' = a\sqrt 6 \)
+) Gọi P là trung điểm của B’C’, suy ra:
\((MNP)//(ABC') \Rightarrow d(MN,AC') = d((MNP),(ABC')) = d(N,(ABC') = \frac{1}{2}d(A',(ABC')\)
Kẻ \(A'H \bot AC' \Rightarrow A'H \bot (ABC') \Rightarrow d(A',(ABC') = A'H = \frac{{AA'.A'C'}}{{AC'}} = \frac{{a\sqrt 6 }}{2}\)
Suy ra : \(d(MN,AC') = \frac{{a\sqrt 6 }}{4} \Rightarrow \) Đáp án A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Lời giải
Chọn A
Từ dáng điệu của đồ thị ta có ngay được:
\( \oplus \) \(\mathop {\lim }\limits_{x \to + \infty } y = + \infty ;\mathop {\lim }\limits_{x \to - \infty } y = - \infty \Rightarrow a > 0\).
\( \oplus \) Đồ thị hàm số cắt trục tung tại một điểm có tung độ dương nên \(d > 0\).
Ta có: \(y' = 3a{x^2} + 2bx + c\)
Mặt khác dựa vào đồ thị ta thấy phương trình \(y' = 0\) có hai nghiệm trái dấu và tổng hai nghiệm này luôn dương nên \(\left\{ \begin{array}{l}ac < 0\\ - \frac{{2b}}{{3a}} > \end{array} \right. \Rightarrow \left\{ \begin{array}{l}c < 0\\b < 0\end{array} \right.\) (do \(a > 0\))
Do đó: \(ab < 0,bc > ,cd < 0\).
Vậy đáp án A.

Câu 2

Lời giải

Lời giải
Chọn D
Gọi \[M\left( {{x_0};{y_0}} \right)\] là tiếp điểm của tiếp tuyến cần tìm.
Ta có \[y' = 3{x^2} - 3\]. Vì tiếp tuyến song song với đường thẳng \[\left( d \right):y = 9x + 17\] nên phương trình tiếp tuyến có dạng \[y = 9x + b\], \[\left( {b \ne 17} \right)\].
Khi đó \[y'\left( {{x_0}} \right) = 9 \Leftrightarrow 3x_0^2 - 3 = 9 \Leftrightarrow {x_0} = \pm 2\].
Với \[{x_0} = 2\], ta có \[{y_0} = {2^3} - 3.2 + 1 = 3\] . Do đó phương trình tiếp tuyến là : \[y = 9\left( {x - 2} \right) + 3 \Leftrightarrow y = 9x - 15\].
Với \[{x_0} = - 2\], ta có \[{y_0} = {\left( { - 2} \right)^3} - 3.\left( { - 2} \right) + 1 = - 1\] . Do đó phương trình tiếp tuyến là : \[y = 9\left( {x + 2} \right) - 1 \Leftrightarrow y = 9x + 17\]. (loại vì \[b \ne 17\])
Vậy có 1 phương trình tiếp tuyến thỏa mãn ycbt là \[y = 9x - 15\].

 

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP