Câu hỏi:

14/02/2023 310

Với giá trị nào của tham số  để đồ thị hàm số Media VietJack  có tiệm cận ngang.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Lời giải
Chọn A
Đồ thị hàm số có tiệm cận ngang
\[ \Rightarrow \] hàm số xác định trên một trong các miền \[\left( { - \infty ;a} \right)\], \[\left( { - \infty ;a} \right]\], \[\left( {a; + \infty } \right)\] hoặc \[\left[ {a; + \infty } \right)\]
\[ \Rightarrow m \ge 0\]
TH1: \[m = 0\]\[ \Rightarrow y = x - \sqrt { - 3x + 7} \]đồ thị hàm số không có tiệm cận ngang.
TH2: \[m > 0\] \[y = x - \sqrt {m{x^2} - 3x + 7} \]
Khi \[x \to + \infty ,y = x - x\sqrt {m - \frac{3}{x} + \frac{7}{{{x^2}}}} \], đồ thị hàm số có tiệm cận ngang khi và chỉ khi \[m = 1\]
Khi \[x \to - \infty ,y = x + x\sqrt {m - \frac{3}{x} + \frac{7}{{{x^2}}}} \to - \infty \], đồ thị hàm số không có tiệm cận ngang
KL: \[m = 1\]
( Bài có thể làm trắc nghiệm bằng cách thử m)

Cách 2:

Với \[m < 0\], ta có hàm số \[y = x - \sqrt {m{x^2} - 3x + 7} \] không tồn tại giới hạn tại dương vô cùng.
Với \[m \in \left( {0;1} \right)\], ta có \[\mathop {\lim }\limits_{x \to + \infty } \left( {x - \sqrt {m{x^2} - 3x + 7} } \right) = + \infty \]\[\mathop {\lim }\limits_{x \to - \infty } \left( {x - \sqrt {m{x^2} - 3x + 7} } \right) = - \infty \].
Với \[m > 1\], ta có \[\mathop {\lim }\limits_{x \to + \infty } \left( {x - \sqrt {m{x^2} - 3x + 7} } \right) = - \infty \]\[\mathop {\lim }\limits_{x \to - \infty } \left( {x - \sqrt {m{x^2} - 3x + 7} } \right) = - \infty \].
Với \[m = 1\], ta có \[\mathop {\lim }\limits_{x \to + \infty } \left( {x - \sqrt {{x^2} - 3x + 7} } \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{3x - 7}}{{x + \sqrt {{x^2} - 3x + 7} }} = \mathop {\lim }\limits_{x \to + \infty } \frac{{3 - \frac{7}{x}}}{{1 + \sqrt {1 - \frac{3}{x} + \frac{7}{{{x^2}}}} }} = \frac{3}{2}\], đồ thị hàm số có tiệm cận ngang là: \[y = \frac{3}{2}\].
[phương pháp trắc nghiệm]
Thay \[m = 1\], nhập hàm vào máy tính, CALC \[{10^6}\], được giá trị gần bằng \[\frac{3}{2}\], đồ thị hàm số có tiệm cận ngang là: \[y = \frac{3}{2}\]. Loại đáp án B, D.

Media VietJack

Thay \[m = - 1\], nhập hàm vào máy tính, CALC \[{10^6}\], máy báo lỗi, dự đoán đồ thị hàm số không có tiệm cận ngang. Loại đáp án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Lời giải
Chọn A
Từ dáng điệu của đồ thị ta có ngay được:
\( \oplus \) \(\mathop {\lim }\limits_{x \to + \infty } y = + \infty ;\mathop {\lim }\limits_{x \to - \infty } y = - \infty \Rightarrow a > 0\).
\( \oplus \) Đồ thị hàm số cắt trục tung tại một điểm có tung độ dương nên \(d > 0\).
Ta có: \(y' = 3a{x^2} + 2bx + c\)
Mặt khác dựa vào đồ thị ta thấy phương trình \(y' = 0\) có hai nghiệm trái dấu và tổng hai nghiệm này luôn dương nên \(\left\{ \begin{array}{l}ac < 0\\ - \frac{{2b}}{{3a}} > \end{array} \right. \Rightarrow \left\{ \begin{array}{l}c < 0\\b < 0\end{array} \right.\) (do \(a > 0\))
Do đó: \(ab < 0,bc > ,cd < 0\).
Vậy đáp án A.

Câu 2

Lời giải

Lời giải
Chọn D
Gọi \[M\left( {{x_0};{y_0}} \right)\] là tiếp điểm của tiếp tuyến cần tìm.
Ta có \[y' = 3{x^2} - 3\]. Vì tiếp tuyến song song với đường thẳng \[\left( d \right):y = 9x + 17\] nên phương trình tiếp tuyến có dạng \[y = 9x + b\], \[\left( {b \ne 17} \right)\].
Khi đó \[y'\left( {{x_0}} \right) = 9 \Leftrightarrow 3x_0^2 - 3 = 9 \Leftrightarrow {x_0} = \pm 2\].
Với \[{x_0} = 2\], ta có \[{y_0} = {2^3} - 3.2 + 1 = 3\] . Do đó phương trình tiếp tuyến là : \[y = 9\left( {x - 2} \right) + 3 \Leftrightarrow y = 9x - 15\].
Với \[{x_0} = - 2\], ta có \[{y_0} = {\left( { - 2} \right)^3} - 3.\left( { - 2} \right) + 1 = - 1\] . Do đó phương trình tiếp tuyến là : \[y = 9\left( {x + 2} \right) - 1 \Leftrightarrow y = 9x + 17\]. (loại vì \[b \ne 17\])
Vậy có 1 phương trình tiếp tuyến thỏa mãn ycbt là \[y = 9x - 15\].

 

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP