Cho hình chóp \[S.ABCD\]có \[ABCD\] là hình thang vuông tại \[A\] và \[D\], \[AB = AD = a\],\[CD = 2a\]. Hình chiếu của \[S\]lên mặt phẳng \[(ABCD)\]trùng với trung điểm của \[BD\]. Biết thể tích tứ diện \[SBCD\] bằng \(\frac{{{a^3}}}{{\sqrt 6 }}\). Tính khoảng cách từ \[A\]đến mặt phẳng \[(SBC)\] là:
Quảng cáo
Trả lời:


\[\Delta SHB\] có: \[\frac{1}{{H{K^2}}} = \frac{1}{{S{H^2}}} + \frac{1}{{H{B^2}}} = \frac{4}{{6{a^2}}} + \frac{4}{{2{a^2}}} = \frac{{16}}{{6{a^2}}}\]\[ \Rightarrow HK = \frac{{\sqrt 6 a}}{4} = d\left( {A,\left( {SBC} \right)} \right)\]
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Câu 2
Lời giải
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.