Câu hỏi:

15/02/2023 487 Lưu

Một xưởng sản xuất cần làm \(100\) chiếc hộp inox bằng nhau, hình dạng là hình hộp chữ nhật có đáy là hình vuông (hộp không có nắp), với thể tích là \(108d{m^3}\)/1 hộp. Giá inox là \(47.000\) đồng/ \(1d{m^2}\). Hãy tính toán sao cho tổng tiền chi phí cho \(100\) chiếc hộp là ít nhất, và số tiền tối thiểu đó là bao nhiêu (nếu chỉ tính số inox vừa đủ để sản xuất \(100\) chiếc hộp, không có phần dư thừa, cắt bỏ)?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Lời giải
Chọn B
Gọi độ dài cạnh đáy của hộp là \(x\left( {dm} \right)\) \( \Rightarrow \) Chiều cao của hộp là \(\frac{{108}}{{{x^2}}}(dm)\).
\( \Rightarrow \) Số inox cần thiết để làm 1 hộp là: \(S = {x^2} + 4x.h = {x^2} + \frac{{432}}{x}(d{m^2})\).
Tổng số tiền chi phí cho 100 chiếc hộp là \(T = 47.000 \times 100 \times S = 4.700.000 \times \left( {{x^2} + \frac{{432}}{x}} \right)\)
Ta có: \(T' = 4.700.000 \times \left( {2x - \frac{{432}}{{{x^2}}}} \right)\).
\(T' = 0 \Leftrightarrow x = 6\)
Media VietJack

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Lời giải
Chọn A
Từ dáng điệu của đồ thị ta có ngay được:
\( \oplus \) \(\mathop {\lim }\limits_{x \to + \infty } y = + \infty ;\mathop {\lim }\limits_{x \to - \infty } y = - \infty \Rightarrow a > 0\).
\( \oplus \) Đồ thị hàm số cắt trục tung tại một điểm có tung độ dương nên \(d > 0\).
Ta có: \(y' = 3a{x^2} + 2bx + c\)
Mặt khác dựa vào đồ thị ta thấy phương trình \(y' = 0\) có hai nghiệm trái dấu và tổng hai nghiệm này luôn dương nên \(\left\{ \begin{array}{l}ac < 0\\ - \frac{{2b}}{{3a}} > \end{array} \right. \Rightarrow \left\{ \begin{array}{l}c < 0\\b < 0\end{array} \right.\) (do \(a > 0\))
Do đó: \(ab < 0,bc > ,cd < 0\).
Vậy đáp án A.

Câu 2

Lời giải

Lời giải
Chọn D
Gọi \[M\left( {{x_0};{y_0}} \right)\] là tiếp điểm của tiếp tuyến cần tìm.
Ta có \[y' = 3{x^2} - 3\]. Vì tiếp tuyến song song với đường thẳng \[\left( d \right):y = 9x + 17\] nên phương trình tiếp tuyến có dạng \[y = 9x + b\], \[\left( {b \ne 17} \right)\].
Khi đó \[y'\left( {{x_0}} \right) = 9 \Leftrightarrow 3x_0^2 - 3 = 9 \Leftrightarrow {x_0} = \pm 2\].
Với \[{x_0} = 2\], ta có \[{y_0} = {2^3} - 3.2 + 1 = 3\] . Do đó phương trình tiếp tuyến là : \[y = 9\left( {x - 2} \right) + 3 \Leftrightarrow y = 9x - 15\].
Với \[{x_0} = - 2\], ta có \[{y_0} = {\left( { - 2} \right)^3} - 3.\left( { - 2} \right) + 1 = - 1\] . Do đó phương trình tiếp tuyến là : \[y = 9\left( {x + 2} \right) - 1 \Leftrightarrow y = 9x + 17\]. (loại vì \[b \ne 17\])
Vậy có 1 phương trình tiếp tuyến thỏa mãn ycbt là \[y = 9x - 15\].

 

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP