Câu hỏi:

17/02/2023 530 Lưu

Các điểm cực đại của hàm số \(y = x - \sin 2x\) là:

A. \(x = \pm \frac{\pi }{6} + k\pi ,\,\,k \in Z\)   
B. \(x = - \frac{\pi }{6} + k\pi ,\,\,k \in Z\)
C. \(x = \frac{\pi }{6} + k\pi ,\,\,k \in Z\)
D. \(x = \pm \frac{\pi }{3} + k2\pi ,\,\,k \in Z\)z

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án B

Phương pháp:

Điểm \(x = {x_0}\) được gọi là điểm cực đại của hàm số \(y = f\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}f'\left( {{x_0}} \right) = 0\\f''\left( {{x_0}} \right) < 0\end{array} \right.\)

Cách giải:

\(y = x - \sin 2x \Rightarrow y = 1 - 2\cos 2x,\,\,\,y'' = 4\sin 2x\)

\(y' = 0 \Leftrightarrow \cos 2x = \frac{1}{2} \Leftrightarrow \left[ \begin{array}{l}2x = \frac{\pi }{3} + k2\pi \\2x = - \frac{\pi }{3} + k2\pi \end{array} \right.,\,\,k \in Z \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k\pi \\x = - \frac{\pi }{6} + k\pi \end{array} \right.,\,\,k \in Z\)

Ta có: \(y''\left( {\frac{\pi }{6} + k\pi } \right) = 4\sin \left( {2\left( {\frac{\pi }{6} + k\pi } \right)} \right) = 4\sin \left( {\frac{\pi }{3} + k2\pi } \right) = 2\sqrt 3 > 0\)

\( \Rightarrow \) Hàm số đạt cực tiểu tại các điểm \(x = \frac{\pi }{6} + k\pi ,\,\,k \in Z\)

\(y''\left( { - \frac{\pi }{6} + k\pi } \right) = 4\sin \left( {2\left( { - \frac{\pi }{6} + k\pi } \right)} \right) = 4\sin \left( { - \frac{\pi }{3} + k2\pi } \right) = - 2\sqrt 3 < 0\)

\( \Rightarrow \) Hàm số đạt cực đại tại các điểm \(x = - \frac{\pi }{6} + k\pi ,\,\,\,k \in Z\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Phương pháp:

Đặt \(\cos \,x = t\). Tìm GTLN, GTNN của hàm số với ẩn là t.

Cách giải:

\(y = 2{\sin ^2}x - \cos \,x + 1 = 2 - 2{\cos ^2}x + 1 = - 2{\cos ^2}x - \cos \,x + 3\)

Đặt \(\cos \,x = t,\,\,t \in \left[ { - 1;1} \right]\). Hàm số trở thành: \(y = 2{t^2} - t + 3,\,\,\,y' = - 4t - 1 = 0 \Leftrightarrow t = - \frac{1}{4}\)

Ta có: \(y\left( { - 1} \right) = 2,\,\,\,y\left( { - \frac{1}{4}} \right) = \frac{{25}}{8},\,\,\,y\left( 1 \right) = 0\)

\( \Rightarrow \min y = 0 = m,\,\,\,\max y = \frac{{25}}{8} = M \Rightarrow M.m = 0\)

Câu 2

A. \(\frac{{ - 51}}{4} \le m \le \frac{{19}}{4}\)
B. \(\frac{{ - 51}}{4} < m < \frac{{19}}{4}\)
C. \( - 51 < m < 19\)

D. \( - 51 \le m \le 19\)

Lời giải

Đáp án A

Tìm miền giá trị của hàm số \(y = {x^3} - 3x - 1\) trên đoạn \(\left[ { - 3;4} \right]\)

Từ đó, xác định giá trị của m để phương trình đã cho có nghiệm trên đoạn \(\left[ { - 3;4} \right]\)

Cách giải:

\({x^3} - 3x + 4m - 1 = 0 \Leftrightarrow {x^3} - 3x - 1 = - 4m\,\,\,\left( * \right)\)

Xét hàm số \(y = {x^3} - 3x - 1\) trên đoạn \(\left[ { - 3;4} \right]\)

Ta có \(y' = 3{x^2} - 3,\,\,\,y' = 0 \Leftrightarrow x = \pm 1\)

Bảng biến thiên:

Tìm các giá trị thực của tham số m sao cho phương trình x^3 - 3x + 4m - 1 = 0 có ít nhất  (ảnh 1)

Để phương trình (*) có nghiệm thì \( - 19 \le - 4m \le 51 \Leftrightarrow - \frac{{51}}{4} \le m \le \frac{{19}}{4}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(y = \frac{{2x - 1}}{{x - 1}}\)

B. \(y = \frac{{2x + 5}}{{x + 1}}\)

C. \(y = \frac{{x + 2}}{{x + 1}}\)

D. \(y = \frac{{2x + 1}}{{x + 1}}\

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left[ {\frac{1}{2}; + \infty } \right)\)
B. \(R\backslash \left\{ {\frac{1}{2}} \right\}\)
C. \(\left( {\frac{1}{2}; + \infty } \right)\)

D. R

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP