Câu hỏi:

17/02/2023 3,652

Giá trị lớn nhất của hàm số \(f\left( x \right) = \frac{{mx - 1}}{{2x + m}}\) trên đoạn \(\left[ {3;5} \right]\) bằng 2 khi và chỉ khi:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

Hàm bậc nhất trên bậc nhất \(y = \frac{{ax + b}}{{cx + d}}\) có GTLN trên \(\left[ {a;b} \right] \Leftrightarrow - \frac{d}{c} \notin \left[ {a;b} \right]\)

Cách giải:

\(f\left( x \right) = \frac{{mx - 1}}{{2x + m}},\,\,\left( {x \ne - \frac{m}{2}} \right) \Rightarrow f'\left( x \right) = \frac{{{m^2} + 2}}{{2x + m}} > 0,\,\, \Leftrightarrow \forall x \ne - \frac{m}{2}\)

Để hàm số đạt GTLN bằng 2 trên đoạn \(\left[ {3;5} \right]\) thì

\(\left\{ \begin{array}{l}\left[ \begin{array}{l} - \frac{m}{2} < 2\\ - \frac{m}{2} > 5\end{array} \right.\\f\left( 5 \right) = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > - 6\\m < - 10\end{array} \right.\\\frac{{5m - 1}}{{10 + m}} = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > - 6\\m < - 10\end{array} \right.\\5m - 1 = 20 + 2m\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > - 6\\m < - 10\end{array} \right.\\m = 7\end{array} \right.\left( {tm} \right)\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Phương pháp:

Đặt \(\cos \,x = t\). Tìm GTLN, GTNN của hàm số với ẩn là t.

Cách giải:

\(y = 2{\sin ^2}x - \cos \,x + 1 = 2 - 2{\cos ^2}x + 1 = - 2{\cos ^2}x - \cos \,x + 3\)

Đặt \(\cos \,x = t,\,\,t \in \left[ { - 1;1} \right]\). Hàm số trở thành: \(y = 2{t^2} - t + 3,\,\,\,y' = - 4t - 1 = 0 \Leftrightarrow t = - \frac{1}{4}\)

Ta có: \(y\left( { - 1} \right) = 2,\,\,\,y\left( { - \frac{1}{4}} \right) = \frac{{25}}{8},\,\,\,y\left( 1 \right) = 0\)

\( \Rightarrow \min y = 0 = m,\,\,\,\max y = \frac{{25}}{8} = M \Rightarrow M.m = 0\)

Lời giải

Đáp án B

Phương pháp:

Giải phương trình bậc hai logarit.

Cách giải:

ĐK: \(x > 0\)

\({\log ^2}x - \log x - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}\log x = - 1\\\log x = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{1}{{10}}\\x = 100\end{array} \right.\)

Phương trình đã cho có tất cả 2 nghiệm.

Câu 3

Tìm các giá trị thực của tham số m sao cho phương trình \({x^3} - 3x + 4m - 1 = 0\) có ít nhất một nghiệm thực trong đoạn \(\left[ { - 3;4} \right]\)?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Tập xác định của hàm số \(y = {\left( {2x - 1} \right)^{ - \frac{1}{2}}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho \({\log _2}3 = a\). Hãy tính \({\log _4}54\) theo a.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay