Câu hỏi:
17/02/2023 1,339
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc tạo bởi mặt bên và mặt đáy là \(\alpha \). Thể tích khối chóp S.ABCD là:
Quảng cáo
Trả lời:
Đáp án C
Phương pháp:
Gọi \(O = AC \cap BD \Rightarrow SO \bot \left( {ABCD} \right) \Leftarrow {V_{S.ABCD}} = \frac{1}{3}.SO.{S_{ABCD}}\)
Cách giải:

Gọi M là trung điểm của BC, O là tâm của hình vuông ABCD
Khi đó: \(\left\{ \begin{array}{l}OM \bot BC\\SO \bot BC\end{array} \right. \Rightarrow BC \bot \left( {SOM} \right)\)
\( \Rightarrow \left( {\left( {SBC} \right);\left( {ABCD} \right)} \right) = \left( {SM;OM} \right) = SMO = \alpha \)
Hình vuông ABCD có cạnh bằng a \( \Rightarrow OM = \frac{a}{2}\)
\(\Delta SOM\) vuông tại O \( \Rightarrow SO = OM.\tan M = \frac{a}{2}.\tan \alpha = \frac{{a\,\tan \alpha }}{2}\)
Thể tích khối chóp S.ABCDlà: \(V = \frac{1}{3}.SO.{S_{ABCD}} = \frac{1}{3}.\frac{{a\,\tan \alpha }}{2}.{a^2} = \frac{{{a^3}\tan \alpha }}{6}\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Phương pháp:
Đặt \(\cos \,x = t\). Tìm GTLN, GTNN của hàm số với ẩn là t.
Cách giải:
\(y = 2{\sin ^2}x - \cos \,x + 1 = 2 - 2{\cos ^2}x + 1 = - 2{\cos ^2}x - \cos \,x + 3\)Đặt \(\cos \,x = t,\,\,t \in \left[ { - 1;1} \right]\). Hàm số trở thành: \(y = 2{t^2} - t + 3,\,\,\,y' = - 4t - 1 = 0 \Leftrightarrow t = - \frac{1}{4}\)
Ta có: \(y\left( { - 1} \right) = 2,\,\,\,y\left( { - \frac{1}{4}} \right) = \frac{{25}}{8},\,\,\,y\left( 1 \right) = 0\)
\( \Rightarrow \min y = 0 = m,\,\,\,\max y = \frac{{25}}{8} = M \Rightarrow M.m = 0\)
Lời giải
Đáp án B
Phương pháp:
Giải phương trình bậc hai logarit.
Cách giải:
ĐK: \(x > 0\)
\({\log ^2}x - \log x - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}\log x = - 1\\\log x = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{1}{{10}}\\x = 100\end{array} \right.\)
Phương trình đã cho có tất cả 2 nghiệm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.