Câu hỏi:

17/02/2023 243

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc tạo bởi mặt bên và mặt đáy là \(\alpha \). Thể tích khối chóp S.ABCD là:

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp:

Gọi \(O = AC \cap BD \Rightarrow SO \bot \left( {ABCD} \right) \Leftarrow {V_{S.ABCD}} = \frac{1}{3}.SO.{S_{ABCD}}\)

Cách giải:
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc tạo bởi mặt bên và mặt đáy là  (ảnh 1)

Gọi M là trung điểm của BC, O là tâm của hình vuông ABCD

Khi đó: \(\left\{ \begin{array}{l}OM \bot BC\\SO \bot BC\end{array} \right. \Rightarrow BC \bot \left( {SOM} \right)\)

\( \Rightarrow \left( {\left( {SBC} \right);\left( {ABCD} \right)} \right) = \left( {SM;OM} \right) = SMO = \alpha \)

Hình vuông ABCD có cạnh bằng a \( \Rightarrow OM = \frac{a}{2}\)

\(\Delta SOM\) vuông tại O \( \Rightarrow SO = OM.\tan M = \frac{a}{2}.\tan \alpha = \frac{{a\,\tan \alpha }}{2}\)

Thể tích khối chóp S.ABCDlà: \(V = \frac{1}{3}.SO.{S_{ABCD}} = \frac{1}{3}.\frac{{a\,\tan \alpha }}{2}.{a^2} = \frac{{{a^3}\tan \alpha }}{6}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Gọi M và m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = 2{\sin ^2}x - \cos \,x + 1\). Thể thì M.m bằng:

Xem đáp án » 17/02/2023 9,800

Câu 2:

Phương trình \({\log ^2}x - \log x - 2 = 0\) có bao nhiêu nghiệm?

Xem đáp án » 17/02/2023 6,925

Câu 3:

Tìm các giá trị thực của tham số m sao cho phương trình \({x^3} - 3x + 4m - 1 = 0\) có ít nhất một nghiệm thực trong đoạn \(\left[ { - 3;4} \right]\)?

Xem đáp án » 17/02/2023 4,318

Câu 4:

Tập xác định của hàm số \(y = {\left( {2x - 1} \right)^{ - \frac{1}{2}}}\)

Xem đáp án » 17/02/2023 3,722

Câu 5:

Giá trị nhỏ nhất của số thực m để hàm số \(y = \frac{1}{3}{x^3} + m{x^2} - mx - m\) đồng biến trên \(\mathbb{R}\) là:

Xem đáp án » 17/02/2023 3,635

Câu 6:

Cho khối chóp \(S.ABC\)\(SA \bot \left( {ABC} \right)\); tam giác ABC vuông tại A, biết \(BC = 3a;\,\,\,AB = a\). Góc giữa mặt phẳng \(\left( {SBC} \right)\)\(\left( {ABC} \right)\) bằng \({45^0}\). Tính thể tích khối chóp S.ABC theo a.

Xem đáp án » 17/02/2023 3,602

Câu 7:

Giá trị lớn nhất của hàm số \(f\left( x \right) = \frac{{mx - 1}}{{2x + m}}\) trên đoạn \(\left[ {3;5} \right]\) bằng 2 khi và chỉ khi:

Xem đáp án » 17/02/2023 3,510

Bình luận


Bình luận