Câu hỏi:

17/02/2023 1,415 Lưu

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc tạo bởi mặt bên và mặt đáy là \(\alpha \). Thể tích khối chóp S.ABCD là:

A. \(\frac{{{a^3}\tan \alpha }}{2}\)
B. \(\frac{{{a^3}\tan \alpha }}{3}\)
C. \(\frac{{{a^3}\tan \alpha }}{6}\)
D. \(\frac{{2{a^3}\tan \alpha }}{3}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án C

Phương pháp:

Gọi \(O = AC \cap BD \Rightarrow SO \bot \left( {ABCD} \right) \Leftarrow {V_{S.ABCD}} = \frac{1}{3}.SO.{S_{ABCD}}\)

Cách giải:
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc tạo bởi mặt bên và mặt đáy là  (ảnh 1)

Gọi M là trung điểm của BC, O là tâm của hình vuông ABCD

Khi đó: \(\left\{ \begin{array}{l}OM \bot BC\\SO \bot BC\end{array} \right. \Rightarrow BC \bot \left( {SOM} \right)\)

\( \Rightarrow \left( {\left( {SBC} \right);\left( {ABCD} \right)} \right) = \left( {SM;OM} \right) = SMO = \alpha \)

Hình vuông ABCD có cạnh bằng a \( \Rightarrow OM = \frac{a}{2}\)

\(\Delta SOM\) vuông tại O \( \Rightarrow SO = OM.\tan M = \frac{a}{2}.\tan \alpha = \frac{{a\,\tan \alpha }}{2}\)

Thể tích khối chóp S.ABCDlà: \(V = \frac{1}{3}.SO.{S_{ABCD}} = \frac{1}{3}.\frac{{a\,\tan \alpha }}{2}.{a^2} = \frac{{{a^3}\tan \alpha }}{6}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Phương pháp:

Đặt \(\cos \,x = t\). Tìm GTLN, GTNN của hàm số với ẩn là t.

Cách giải:

\(y = 2{\sin ^2}x - \cos \,x + 1 = 2 - 2{\cos ^2}x + 1 = - 2{\cos ^2}x - \cos \,x + 3\)

Đặt \(\cos \,x = t,\,\,t \in \left[ { - 1;1} \right]\). Hàm số trở thành: \(y = 2{t^2} - t + 3,\,\,\,y' = - 4t - 1 = 0 \Leftrightarrow t = - \frac{1}{4}\)

Ta có: \(y\left( { - 1} \right) = 2,\,\,\,y\left( { - \frac{1}{4}} \right) = \frac{{25}}{8},\,\,\,y\left( 1 \right) = 0\)

\( \Rightarrow \min y = 0 = m,\,\,\,\max y = \frac{{25}}{8} = M \Rightarrow M.m = 0\)

Câu 2

A. \(\frac{{ - 51}}{4} \le m \le \frac{{19}}{4}\)
B. \(\frac{{ - 51}}{4} < m < \frac{{19}}{4}\)
C. \( - 51 < m < 19\)

D. \( - 51 \le m \le 19\)

Lời giải

Đáp án A

Tìm miền giá trị của hàm số \(y = {x^3} - 3x - 1\) trên đoạn \(\left[ { - 3;4} \right]\)

Từ đó, xác định giá trị của m để phương trình đã cho có nghiệm trên đoạn \(\left[ { - 3;4} \right]\)

Cách giải:

\({x^3} - 3x + 4m - 1 = 0 \Leftrightarrow {x^3} - 3x - 1 = - 4m\,\,\,\left( * \right)\)

Xét hàm số \(y = {x^3} - 3x - 1\) trên đoạn \(\left[ { - 3;4} \right]\)

Ta có \(y' = 3{x^2} - 3,\,\,\,y' = 0 \Leftrightarrow x = \pm 1\)

Bảng biến thiên:

Tìm các giá trị thực của tham số m sao cho phương trình x^3 - 3x + 4m - 1 = 0 có ít nhất  (ảnh 1)

Để phương trình (*) có nghiệm thì \( - 19 \le - 4m \le 51 \Leftrightarrow - \frac{{51}}{4} \le m \le \frac{{19}}{4}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(y = \frac{{2x - 1}}{{x - 1}}\)

B. \(y = \frac{{2x + 5}}{{x + 1}}\)

C. \(y = \frac{{x + 2}}{{x + 1}}\)

D. \(y = \frac{{2x + 1}}{{x + 1}}\

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left[ {\frac{1}{2}; + \infty } \right)\)
B. \(R\backslash \left\{ {\frac{1}{2}} \right\}\)
C. \(\left( {\frac{1}{2}; + \infty } \right)\)

D. R

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP