Câu hỏi:

17/02/2023 259

Cho hàm số \(y = {x^3} - 2m{x^2} + 1\) có đồ thị \(\left( {{C_m}} \right)\). Tìm m sao cho \(\left( {{C_m}} \right)\) cắt đường thẳng \(d:y = x + 1\) tại ba điểm phân biệt có hoành độ \({x_1},\,{x_2},\,{x_3}\) thỏa mãn \({x_1} + {x_2} + {x_3} = 101\)

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

+) Xét phương trình hoành độ giao điểm, tìm điều kiện để phương trình có 3 nghiệm phân biệt.

+) Sử dụng định lí Vi-ét.

Cách giải:

Phương trình hoành độ giao điểm của đồ thị \(\left( {{C_m}} \right)\) và đường thẳng \(d:y = x + 1\)

\({x^3} - 2m{x^2} + 1 = x + 1 \Leftrightarrow {x^3} - 2mx - x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} - 2mx - 1 = 0\,\,\,\left( 1 \right)\end{array} \right.\)

Để 2 đồ thị cắt nhau tại 3 điểm phân biệt thì phương trình (1) có 2 nghiệm phân biệt khác 0

\( \Leftrightarrow \left\{ \begin{array}{l}{0^2} - 2m.0 - 1 \ne 0\\{m^2} + 1 > 0\end{array} \right.\) (luôn đúng với mọi m)

Khi đó, phương trình (1) có hai nghiệm \({x_1},\,{x_2}\) thỏa mãn \({x_1} + {x_2} = 2m\) (hệ thức Vi-ét)

Đặt nghiệm \({x_3} = 0\). Ta có \({x_1} + {x_2} + {x_3} = 101 \Leftrightarrow 2m + 0 = 101 \Rightarrow m = \frac{{101}}{2}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Gọi M và m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = 2{\sin ^2}x - \cos \,x + 1\). Thể thì M.m bằng:

Xem đáp án » 17/02/2023 8,672

Câu 2:

Phương trình \({\log ^2}x - \log x - 2 = 0\) có bao nhiêu nghiệm?

Xem đáp án » 17/02/2023 6,548

Câu 3:

Tìm các giá trị thực của tham số m sao cho phương trình \({x^3} - 3x + 4m - 1 = 0\) có ít nhất một nghiệm thực trong đoạn \(\left[ { - 3;4} \right]\)?

Xem đáp án » 17/02/2023 3,724

Câu 4:

Cho khối chóp \(S.ABC\)\(SA \bot \left( {ABC} \right)\); tam giác ABC vuông tại A, biết \(BC = 3a;\,\,\,AB = a\). Góc giữa mặt phẳng \(\left( {SBC} \right)\)\(\left( {ABC} \right)\) bằng \({45^0}\). Tính thể tích khối chóp S.ABC theo a.

Xem đáp án » 17/02/2023 3,507

Câu 5:

Giá trị nhỏ nhất của số thực m để hàm số \(y = \frac{1}{3}{x^3} + m{x^2} - mx - m\) đồng biến trên \(\mathbb{R}\) là:

Xem đáp án » 17/02/2023 3,438

Câu 6:

Tập xác định của hàm số \(y = {\left( {2x - 1} \right)^{ - \frac{1}{2}}}\)

Xem đáp án » 17/02/2023 3,435

Câu 7:

Giá trị lớn nhất của hàm số \(f\left( x \right) = \frac{{mx - 1}}{{2x + m}}\) trên đoạn \(\left[ {3;5} \right]\) bằng 2 khi và chỉ khi:

Xem đáp án » 17/02/2023 3,343

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store