Cho hình chóp S.ABC có tam giác ABC đều cạnh \(a = 3cm,\,\,SA \bot \left( {ABC} \right)\) và \(SA = 2a\). Tính thể tích khối cầu ngoại tiếp hình chóp \(S.ABC\) 
                                    
                                                                                                                        Cho hình chóp S.ABC có tam giác ABC đều cạnh \(a = 3cm,\,\,SA \bot \left( {ABC} \right)\) và \(SA = 2a\). Tính thể tích khối cầu ngoại tiếp hình chóp \(S.ABC\)
D. \(16\pi \sqrt 3 \,c{m^3}\)
Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    Đáp án C
+) Xác định trục mặt đáy (đường thẳng đi qua tâm đáy và vuông góc với đáy).
+) Xác định trục của cạnh bên SA.
+) Xác định giao điểm của hai trục trên, đó chính là tâm mặt cầu ngoại tiếp khối chóp.
Cách giải:

Gọi M, N, I lần lượt là trung điểm của AB, BC, SA; G là trọng tâm tâm giác ABC
Mà tam giác ABC đều \( \Rightarrow \) G là tâm đường tròn ngoại tiếp tam giác ABC
Trong (SAN), dựng đường thẳng qua G song song SA, đường thẳng qua I song song AN, chúng cắt nhau tại O
Khi đó, \(OA = OB = OC = OS\) hay O là tâm mặt cầu ngoại tiếp hình chóp S.ABC
I là trung điểm của SA \( \Rightarrow IA = \frac{{SA}}{2} = \frac{{2a}}{2} = a = 3\left( {cm} \right)\)
Tam giác đều cạnh ABC \(a = 3cm \Rightarrow AN = \frac{{a\sqrt 3 }}{2} \Rightarrow AG = \frac{2}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3} = \frac{{3.\sqrt 3 }}{3} = \sqrt 3 \left( {cm} \right)\)
Tứ giác AGOI có: \(OG//AI,\,\,\,OI//AG \Rightarrow \) AGOI là hình bình hành
Mà \(A = {90^0} \Rightarrow \) AGOI là hình chữ nhật \( \Rightarrow OA = \sqrt {A{I^2} + A{G^2}} = \sqrt {{3^2} + {{\left( {\sqrt 3 } \right)}^2}} = 2\sqrt 3 \left( {cm} \right)\)
\( \Rightarrow \) Bán kính mặt cầu ngoại tiếp hình chóp S.ABC là: \(R = 2\sqrt 3 \left( {cm} \right)\)
\( \Rightarrow \) Thể tích khối cầu ngoại tiếp hình chóp S.ABC là: \(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi .{\left( {2\sqrt 3 } \right)^3} = 32\sqrt 3 \pi \left( {c{m^3}} \right)\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án D
Phương pháp:
Đặt \(\cos \,x = t\). Tìm GTLN, GTNN của hàm số với ẩn là t.
Cách giải:
\(y = 2{\sin ^2}x - \cos \,x + 1 = 2 - 2{\cos ^2}x + 1 = - 2{\cos ^2}x - \cos \,x + 3\)Đặt \(\cos \,x = t,\,\,t \in \left[ { - 1;1} \right]\). Hàm số trở thành: \(y = 2{t^2} - t + 3,\,\,\,y' = - 4t - 1 = 0 \Leftrightarrow t = - \frac{1}{4}\)
Ta có: \(y\left( { - 1} \right) = 2,\,\,\,y\left( { - \frac{1}{4}} \right) = \frac{{25}}{8},\,\,\,y\left( 1 \right) = 0\)
\( \Rightarrow \min y = 0 = m,\,\,\,\max y = \frac{{25}}{8} = M \Rightarrow M.m = 0\)
Câu 2
D. \( - 51 \le m \le 19\)
Lời giải
Đáp án A
Tìm miền giá trị của hàm số \(y = {x^3} - 3x - 1\) trên đoạn \(\left[ { - 3;4} \right]\)
Từ đó, xác định giá trị của m để phương trình đã cho có nghiệm trên đoạn \(\left[ { - 3;4} \right]\)
Cách giải:
\({x^3} - 3x + 4m - 1 = 0 \Leftrightarrow {x^3} - 3x - 1 = - 4m\,\,\,\left( * \right)\)
Xét hàm số \(y = {x^3} - 3x - 1\) trên đoạn \(\left[ { - 3;4} \right]\)
Ta có \(y' = 3{x^2} - 3,\,\,\,y' = 0 \Leftrightarrow x = \pm 1\)
Bảng biến thiên:

Để phương trình (*) có nghiệm thì \( - 19 \le - 4m \le 51 \Leftrightarrow - \frac{{51}}{4} \le m \le \frac{{19}}{4}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(y = \frac{{2x - 1}}{{x - 1}}\)
C. \(y = \frac{{x + 2}}{{x + 1}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
D. R
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
D. \(m = 0\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
D. \({V_{S.ABC}} = \frac{{2{a^3}}}{9}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

 Nhắn tin Zalo
 Nhắn tin Zalo