Câu hỏi:

17/02/2023 909

Cho hình chóp S.ABC có tam giác ABC đều cạnh \(a = 3cm,\,\,SA \bot \left( {ABC} \right)\)\(SA = 2a\). Tính thể tích khối cầu ngoại tiếp hình chóp \(S.ABC\)

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

+) Xác định trục mặt đáy (đường thẳng đi qua tâm đáy và vuông góc với đáy).

+) Xác định trục của cạnh bên SA.

+) Xác định giao điểm của hai trục trên, đó chính là tâm mặt cầu ngoại tiếp khối chóp.

Cách giải:

Cho hình chóp S.ABC có tam giác ABC đều cạnh a = 3cm, SA vuông góc (ABC) và SA = 2a (ảnh 1)

Gọi M, N, I lần lượt là trung điểm của AB, BC, SA; G là trọng tâm tâm giác ABC

Mà tam giác ABC đều \( \Rightarrow \) G là tâm đường tròn ngoại tiếp tam giác ABC

Trong (SAN), dựng đường thẳng qua G song song SA, đường thẳng qua I song song AN, chúng cắt nhau tại O

Khi đó, \(OA = OB = OC = OS\) hay O là tâm mặt cầu ngoại tiếp hình chóp S.ABC

I là trung điểm của SA \( \Rightarrow IA = \frac{{SA}}{2} = \frac{{2a}}{2} = a = 3\left( {cm} \right)\)

Tam giác đều cạnh ABC \(a = 3cm \Rightarrow AN = \frac{{a\sqrt 3 }}{2} \Rightarrow AG = \frac{2}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3} = \frac{{3.\sqrt 3 }}{3} = \sqrt 3 \left( {cm} \right)\)

Tứ giác AGOI có: \(OG//AI,\,\,\,OI//AG \Rightarrow \) AGOI là hình bình hành

\(A = {90^0} \Rightarrow \) AGOI là hình chữ nhật \( \Rightarrow OA = \sqrt {A{I^2} + A{G^2}} = \sqrt {{3^2} + {{\left( {\sqrt 3 } \right)}^2}} = 2\sqrt 3 \left( {cm} \right)\)

\( \Rightarrow \) Bán kính mặt cầu ngoại tiếp hình chóp S.ABC là: \(R = 2\sqrt 3 \left( {cm} \right)\)

\( \Rightarrow \) Thể tích khối cầu ngoại tiếp hình chóp S.ABC là: \(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi .{\left( {2\sqrt 3 } \right)^3} = 32\sqrt 3 \pi \left( {c{m^3}} \right)\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Gọi M và m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = 2{\sin ^2}x - \cos \,x + 1\). Thể thì M.m bằng:

Xem đáp án » 17/02/2023 9,510

Câu 2:

Phương trình \({\log ^2}x - \log x - 2 = 0\) có bao nhiêu nghiệm?

Xem đáp án » 17/02/2023 6,641

Câu 3:

Tìm các giá trị thực của tham số m sao cho phương trình \({x^3} - 3x + 4m - 1 = 0\) có ít nhất một nghiệm thực trong đoạn \(\left[ { - 3;4} \right]\)?

Xem đáp án » 17/02/2023 4,126

Câu 4:

Tập xác định của hàm số \(y = {\left( {2x - 1} \right)^{ - \frac{1}{2}}}\)

Xem đáp án » 17/02/2023 3,604

Câu 5:

Giá trị nhỏ nhất của số thực m để hàm số \(y = \frac{1}{3}{x^3} + m{x^2} - mx - m\) đồng biến trên \(\mathbb{R}\) là:

Xem đáp án » 17/02/2023 3,575

Câu 6:

Cho khối chóp \(S.ABC\)\(SA \bot \left( {ABC} \right)\); tam giác ABC vuông tại A, biết \(BC = 3a;\,\,\,AB = a\). Góc giữa mặt phẳng \(\left( {SBC} \right)\)\(\left( {ABC} \right)\) bằng \({45^0}\). Tính thể tích khối chóp S.ABC theo a.

Xem đáp án » 17/02/2023 3,539

Câu 7:

Giá trị lớn nhất của hàm số \(f\left( x \right) = \frac{{mx - 1}}{{2x + m}}\) trên đoạn \(\left[ {3;5} \right]\) bằng 2 khi và chỉ khi:

Xem đáp án » 17/02/2023 3,459

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store