Cho hình chóp S.ABC có tam giác ABC đều cạnh \(a = 3cm,\,\,SA \bot \left( {ABC} \right)\) và \(SA = 2a\). Tính thể tích khối cầu ngoại tiếp hình chóp \(S.ABC\)
Cho hình chóp S.ABC có tam giác ABC đều cạnh \(a = 3cm,\,\,SA \bot \left( {ABC} \right)\) và \(SA = 2a\). Tính thể tích khối cầu ngoại tiếp hình chóp \(S.ABC\)
Quảng cáo
Trả lời:
Đáp án C
+) Xác định trục mặt đáy (đường thẳng đi qua tâm đáy và vuông góc với đáy).
+) Xác định trục của cạnh bên SA.
+) Xác định giao điểm của hai trục trên, đó chính là tâm mặt cầu ngoại tiếp khối chóp.
Cách giải:

Gọi M, N, I lần lượt là trung điểm của AB, BC, SA; G là trọng tâm tâm giác ABC
Mà tam giác ABC đều \( \Rightarrow \) G là tâm đường tròn ngoại tiếp tam giác ABC
Trong (SAN), dựng đường thẳng qua G song song SA, đường thẳng qua I song song AN, chúng cắt nhau tại O
Khi đó, \(OA = OB = OC = OS\) hay O là tâm mặt cầu ngoại tiếp hình chóp S.ABC
I là trung điểm của SA \( \Rightarrow IA = \frac{{SA}}{2} = \frac{{2a}}{2} = a = 3\left( {cm} \right)\)
Tam giác đều cạnh ABC \(a = 3cm \Rightarrow AN = \frac{{a\sqrt 3 }}{2} \Rightarrow AG = \frac{2}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3} = \frac{{3.\sqrt 3 }}{3} = \sqrt 3 \left( {cm} \right)\)
Tứ giác AGOI có: \(OG//AI,\,\,\,OI//AG \Rightarrow \) AGOI là hình bình hành
Mà \(A = {90^0} \Rightarrow \) AGOI là hình chữ nhật \( \Rightarrow OA = \sqrt {A{I^2} + A{G^2}} = \sqrt {{3^2} + {{\left( {\sqrt 3 } \right)}^2}} = 2\sqrt 3 \left( {cm} \right)\)
\( \Rightarrow \) Bán kính mặt cầu ngoại tiếp hình chóp S.ABC là: \(R = 2\sqrt 3 \left( {cm} \right)\)
\( \Rightarrow \) Thể tích khối cầu ngoại tiếp hình chóp S.ABC là: \(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi .{\left( {2\sqrt 3 } \right)^3} = 32\sqrt 3 \pi \left( {c{m^3}} \right)\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Phương pháp:
Đặt \(\cos \,x = t\). Tìm GTLN, GTNN của hàm số với ẩn là t.
Cách giải:
\(y = 2{\sin ^2}x - \cos \,x + 1 = 2 - 2{\cos ^2}x + 1 = - 2{\cos ^2}x - \cos \,x + 3\)Đặt \(\cos \,x = t,\,\,t \in \left[ { - 1;1} \right]\). Hàm số trở thành: \(y = 2{t^2} - t + 3,\,\,\,y' = - 4t - 1 = 0 \Leftrightarrow t = - \frac{1}{4}\)
Ta có: \(y\left( { - 1} \right) = 2,\,\,\,y\left( { - \frac{1}{4}} \right) = \frac{{25}}{8},\,\,\,y\left( 1 \right) = 0\)
\( \Rightarrow \min y = 0 = m,\,\,\,\max y = \frac{{25}}{8} = M \Rightarrow M.m = 0\)
Lời giải
Đáp án B
Phương pháp:
Giải phương trình bậc hai logarit.
Cách giải:
ĐK: \(x > 0\)
\({\log ^2}x - \log x - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}\log x = - 1\\\log x = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{1}{{10}}\\x = 100\end{array} \right.\)
Phương trình đã cho có tất cả 2 nghiệm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.