Cho hình lăng trụ đứng ABC.A’B’C’ có thể tích bằng V. Các điểm M, N, P lần lượt thuộc cạnh AA’, BB’, CC’ sao cho \(\frac{{AM}}{{AA'}} = \frac{1}{2},\,\,\,\frac{N}{{BB'}} = \frac{{CP}}{{CC'}} = \frac{3}{4}\). Thể tích khối đa diện ABC.MNP là:
Cho hình lăng trụ đứng ABC.A’B’C’ có thể tích bằng V. Các điểm M, N, P lần lượt thuộc cạnh AA’, BB’, CC’ sao cho \(\frac{{AM}}{{AA'}} = \frac{1}{2},\,\,\,\frac{N}{{BB'}} = \frac{{CP}}{{CC'}} = \frac{3}{4}\). Thể tích khối đa diện ABC.MNP là:
Quảng cáo
Trả lời:
Đáp án A
Phương pháp:
Phân chia và lắp ghép các khối đa diện.
Cách giải:

Gọi E, F lần lượt là trung điểm của BB’, CC’. Khi đó: ABC.MEF là hình lăng trụ đứng và \({V_{ABC.MEF}} = \frac{1}{2}V\)
Ta có:
\({V_{M.EFNP}} = \frac{1}{4}{V_{M.BCC'B'}} = \frac{1}{4}.{V_{ABCC'B'}} = \frac{1}{4}.\left( {V - {V_{A.A'B'C'}}} \right) = \frac{1}{4}\left( {V - \frac{V}{3}} \right) = \frac{1}{4}.\frac{2}{3}V = \frac{V}{6}\)
\( \Rightarrow {V_{ABC.MNP}} = {V_{ABC.MEF}} + {V_{M.EFNP}} = \frac{1}{2}V + \frac{1}{6}V = \frac{2}{3}V\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Phương pháp:
Đặt \(\cos \,x = t\). Tìm GTLN, GTNN của hàm số với ẩn là t.
Cách giải:
\(y = 2{\sin ^2}x - \cos \,x + 1 = 2 - 2{\cos ^2}x + 1 = - 2{\cos ^2}x - \cos \,x + 3\)Đặt \(\cos \,x = t,\,\,t \in \left[ { - 1;1} \right]\). Hàm số trở thành: \(y = 2{t^2} - t + 3,\,\,\,y' = - 4t - 1 = 0 \Leftrightarrow t = - \frac{1}{4}\)
Ta có: \(y\left( { - 1} \right) = 2,\,\,\,y\left( { - \frac{1}{4}} \right) = \frac{{25}}{8},\,\,\,y\left( 1 \right) = 0\)
\( \Rightarrow \min y = 0 = m,\,\,\,\max y = \frac{{25}}{8} = M \Rightarrow M.m = 0\)
Lời giải
Đáp án B
Phương pháp:
Giải phương trình bậc hai logarit.
Cách giải:
ĐK: \(x > 0\)
\({\log ^2}x - \log x - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}\log x = - 1\\\log x = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{1}{{10}}\\x = 100\end{array} \right.\)
Phương trình đã cho có tất cả 2 nghiệm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.