Câu hỏi:
17/02/2023 473Cho hình lăng trụ đứng ABC.A’B’C’ có thể tích bằng V. Các điểm M, N, P lần lượt thuộc cạnh AA’, BB’, CC’ sao cho \(\frac{{AM}}{{AA'}} = \frac{1}{2},\,\,\,\frac{N}{{BB'}} = \frac{{CP}}{{CC'}} = \frac{3}{4}\). Thể tích khối đa diện ABC.MNP là:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A
Phương pháp:
Phân chia và lắp ghép các khối đa diện.
Cách giải:
Gọi E, F lần lượt là trung điểm của BB’, CC’. Khi đó: ABC.MEF là hình lăng trụ đứng và \({V_{ABC.MEF}} = \frac{1}{2}V\)
Ta có:
\({V_{M.EFNP}} = \frac{1}{4}{V_{M.BCC'B'}} = \frac{1}{4}.{V_{ABCC'B'}} = \frac{1}{4}.\left( {V - {V_{A.A'B'C'}}} \right) = \frac{1}{4}\left( {V - \frac{V}{3}} \right) = \frac{1}{4}.\frac{2}{3}V = \frac{V}{6}\)
\( \Rightarrow {V_{ABC.MNP}} = {V_{ABC.MEF}} + {V_{M.EFNP}} = \frac{1}{2}V + \frac{1}{6}V = \frac{2}{3}V\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Gọi M và m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = 2{\sin ^2}x - \cos \,x + 1\). Thể thì M.m bằng:
Câu 2:
Phương trình \({\log ^2}x - \log x - 2 = 0\) có bao nhiêu nghiệm?
Câu 3:
Câu 4:
Cho khối chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\); tam giác ABC vuông tại A, biết \(BC = 3a;\,\,\,AB = a\). Góc giữa mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\) bằng \({45^0}\). Tính thể tích khối chóp S.ABC theo a.
Câu 5:
Giá trị nhỏ nhất của số thực m để hàm số \(y = \frac{1}{3}{x^3} + m{x^2} - mx - m\) đồng biến trên \(\mathbb{R}\) là:
Câu 6:
Tập xác định của hàm số \(y = {\left( {2x - 1} \right)^{ - \frac{1}{2}}}\) là
Câu 7:
Giá trị lớn nhất của hàm số \(f\left( x \right) = \frac{{mx - 1}}{{2x + m}}\) trên đoạn \(\left[ {3;5} \right]\) bằng 2 khi và chỉ khi:
về câu hỏi!