Câu hỏi:
19/02/2023 109Cho hình hộp chữ nhật ABCD.A’B’C’D’ có \(AB = a,\,\,AD = \sqrt 2 a,\,\,AC' = 2\sqrt 3 a\). Tính theo a thể tích V của khối hộp ABCD.A’B’C’D’.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án C
Phương pháp:
Thể tích khối hộp chữ nhật: \(V = abc\)
Cách giải:
ABCD là hình chữ nhật \( \Rightarrow AC = \sqrt {A{B^2} + A{D^2}} = \sqrt {{a^2} + {{\left( {\sqrt 2 a} \right)}^2}} = \sqrt 3 a\)
ACC’A’ là hình chữ nhật \( \Rightarrow AA' = \sqrt {AC{'^2} - A{C^2}} = \sqrt {{{\left( {2\sqrt 3 a} \right)}^2} - {{\left( {\sqrt 3 a} \right)}^2}} = 3a\)
Thể tích khối hộp chữ nhật: \(V = AB.AD.AA' = a.\sqrt 2 a.3a = 3\sqrt 2 {a^3}\)CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(y = \frac{{ax + b}}{{x - c}}\) có đồ thị như hình vẽ bên. Tìm khẳng định đúng trong các khẳng định sau
Câu 2:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, \(ABC = {120^0}\). Cạnh bên \(SA = \sqrt 3 a\) và SA vuông góc với (ABCD). Tính theo a thể tích V của khối chóp S.BCD.
Câu 3:
Hàm số nào sau đây không đồng biến trên khoảng \(\left( { - \infty ; + \infty } \right)\)
Câu 4:
Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?
Câu 7:
Đạo hàm của hàm số \(y = x\ln x\) trên khoảng \(\left( {0; + \infty } \right)\) là
về câu hỏi!