Câu hỏi:
19/02/2023 220Ông An gửi 100 triệu đồng vào ngân hàng với hình thức lãi kép, kỳ hạn 1 năm với lãi suất năm. Sau 5 năm ông rút toàn bộ tiền và dùng một nửa để sửa nhà, số tiền còn lại ông tiếp tục gửi vào ngân hàng với kỳ hạn và lãi suất như lần trước. Số tiền lãi mà ông An nhận được sau 10 năm gửi gần nhất với giá trị nào sau đây? 8%/
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A
Phương pháp:
Công thức lãi kép, không kỳ hạn: \({A_n} = M{\left( {1 + r\% } \right)^n}\)
Với: \({A_n}\) là số tiền nhận được sau tháng thứ n,
M là số tiền gửi ban đầu,
n là thời gian gửi tiền (tháng),
r là lãi suất định kì (%)
Cách giải:
Số tiền ông An rút lần 1 là: \(100.{\left( {1 + 8\% } \right)^5} = 146,9328077\) (triệu đồng)
Số tiền ông An gửi lần 2 là: \(146.9328077:2 = 73,46640384\) (triệu đồng)
Số tiền ông An rút lần 2 (gửi 5 năm tiếp theo) là: \(73,46640384.{\left( {1 + 8\% } \right)^5} = 107,9462499\) (triệu đồng)
Số tiền lãi là: \(107,9462499 - 73,4660384 = 34,47984602 \approx 34,480\) (triệu đồng).CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(y = \frac{{ax + b}}{{x - c}}\) có đồ thị như hình vẽ bên. Tìm khẳng định đúng trong các khẳng định sau
Câu 2:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, \(ABC = {120^0}\). Cạnh bên \(SA = \sqrt 3 a\) và SA vuông góc với (ABCD). Tính theo a thể tích V của khối chóp S.BCD.
Câu 3:
Hàm số nào sau đây không đồng biến trên khoảng \(\left( { - \infty ; + \infty } \right)\)
Câu 4:
Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?
Câu 7:
Đạo hàm của hàm số \(y = x\ln x\) trên khoảng \(\left( {0; + \infty } \right)\) là
về câu hỏi!