Câu hỏi:

19/02/2023 297

Tìm số nghiệm nguyên của bất phương trình \(\sqrt {25 - {x^2}} {\log _2}\left( {{x^2} - 4x + 5} \right) \ge 0\)

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Phương pháp:

- Tìm TXĐ

- Giải bất phương trình và tìm số nghiệm nguyên.

Cách giải:

Điều kiện xác định: \(\left\{ \begin{array}{l}25 - {x^2} \ge 0\\{x^2} - 4x + 5 > 0\end{array} \right. \Leftrightarrow - 5 \le x \le 5\)

\(\sqrt {25 - {x^2}} {\log _2}\left( {{x^2} - 4x + 5} \right) \le 0\left[ \begin{array}{l}\sqrt {25 - {x^2}} = 0\\\left\{ \begin{array}{l}\sqrt {25 - {x^2}} > 0\\{\log _2}\left( {{x^2} - 4x + 5} \right) \le 0\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left[ \begin{array}{l}x = 5\\x = - 5\end{array} \right.\\\left\{ \begin{array}{l} - 5 < x < 5\\{x^2} - 4x + 5 \le 1\end{array} \right.\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x = 5\\x = - 5\\\left\{ \begin{array}{l} - 5 < x < 5\\{x^2} - 4x + 4 \le 0\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 5\\x = - 5\\\left\{ \begin{array}{l} - 5 < x < 5\\{\left( {x - 2} \right)^2} \le 0\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 5\\x = - 5\\\left\{ \begin{array}{l} - 5 < x < 5\\x = 2\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 5\\x = - 5\\x = 2\end{array} \right.\)

Vậy bất phương trình có 3 nghiệm nguyên.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = \frac{{ax + b}}{{x - c}}\) có đồ thị như hình vẽ bên. Tìm khẳng định đúng trong các khẳng định sau

Cho hàm số y = (ax + b) / (x - c) có đồ thị như hình vẽ bên. Tìm khẳng định đúng trong các (ảnh 1)

Xem đáp án » 19/02/2023 9,095

Câu 2:

Hàm số nào sau đây không đồng biến trên khoảng \(\left( { - \infty ; + \infty } \right)\)

Xem đáp án » 19/02/2023 7,257

Câu 3:

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, \(ABC = {120^0}\). Cạnh bên \(SA = \sqrt 3 a\)SA vuông góc với (ABCD). Tính theo a thể tích V của khối chóp S.BCD.

Xem đáp án » 19/02/2023 6,810

Câu 4:

Trong các mệnh đề sau, mệnh đề nào sai?

Xem đáp án » 19/02/2023 4,164

Câu 5:

Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?

Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là (ảnh 1)

Xem đáp án » 19/02/2023 4,042

Câu 6:

Tìm nguyên hàm của hàm số \(f\left( x \right) = \frac{2}{{{x^2} - 1}}\)

Xem đáp án » 19/02/2023 2,617

Câu 7:

Tìm mệnh đề đúng trong các mệnh đề sau

Xem đáp án » 19/02/2023 2,418

Bình luận


Bình luận