Câu hỏi:
19/02/2023 401Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với (ABCD). Biết rằng côsin của góc giữa (SCD) và (ABCD) bằng \(\frac{{2\sqrt {19} }}{{19}}\). Tính theo a thể tích V của khối chóp S.ABCD.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
Xác định góc giữa hai mặt phẳng \(\left( {\alpha ;\beta } \right)\)
- Tìm giao tuyến \(\Delta \) của \(\left( {\alpha ;\beta } \right)\)
- Xác định 1 mặt phẳng \(\gamma \bot \Delta \)
- Tìm các giao tuyến \(a = \alpha \cap \gamma ,\,\,\,b = \beta \cap \gamma \)
- Góc giữa hai mặt phẳng \(\left( {\alpha ;\beta } \right):\,\,\,\left( {\alpha ;\beta } \right) = \left( {a;b} \right)\)
Cách giải:
Gọi I, J lần lượt là trung điểm của AB, CD.
Tam giác SAB cân tại S \( \Rightarrow SI \bot AB\)
Vì mặt bên SAB nằm trong mặt phẳng vuông góc với (ABCD) nên \(SI \bot \left( {ABCD} \right)\)
Ta có: \[{\rm{IJ}} \bot CD,\,\,SI \bot CD \Rightarrow CD \bot \left( {SIJ} \right)\]
\(\left\{ \begin{array}{l}\left( {SCD} \right) \cap \left( {ABCD} \right) = CD\\\left( {SIJ} \right) \bot CD\\\left( {SIJ} \right) \cap \left( {SCD} \right) = SJ\\\left( {SIJ} \right) \cap \left( {ABCD} \right) = IJ\end{array} \right. \Rightarrow \left( {\left( {SCD} \right);\left( {ABCD} \right)} \right) = \left( {SJ;IJ} \right) = SJI\,\,do\,\,SJI < {90^0}\)
\(\cos \,SJI = \frac{{2\sqrt {19} }}{{19}}\)
\( \Rightarrow \frac{{IJ}}{{SJ}} = \frac{{2\sqrt {19} }}{{19}} \Rightarrow S = \frac{a}{{\frac{{2\sqrt {19} }}{{19}}}} = \frac{{a\sqrt {19} }}{2}\)
\( \Rightarrow SI = \sqrt {S{J^2} - I{J^2}} = \sqrt {{{\left( {\frac{{a\sqrt {19} }}{2}} \right)}^2} - {a^2}} = \frac{{a\sqrt {15} }}{2}\)
Thể tích của khối chóp S.ABCD: \(V = \frac{1}{3}.SI.{S_{ABCD}} = \frac{1}{3}.\frac{{a\sqrt {15} }}{2}.{a^2} = \frac{{{a^3}\sqrt {15} }}{6}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(y = \frac{{ax + b}}{{x - c}}\) có đồ thị như hình vẽ bên. Tìm khẳng định đúng trong các khẳng định sau
Câu 2:
Hàm số nào sau đây không đồng biến trên khoảng \(\left( { - \infty ; + \infty } \right)\)
Câu 3:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, \(ABC = {120^0}\). Cạnh bên \(SA = \sqrt 3 a\) và SA vuông góc với (ABCD). Tính theo a thể tích V của khối chóp S.BCD.
Câu 5:
Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?
Câu 6:
Tìm nguyên hàm của hàm số \(f\left( x \right) = \frac{2}{{{x^2} - 1}}\)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận