Câu hỏi:

19/02/2023 155

Cho hàm số \(f\left( x \right) = a{x^4} + b{x^2} + c\) với \(a > 0,\,\,c > 2017,\,\,\,a + b + c < 2017\). Số cực trị của hàm số \(y = \left| {f\left( x \right) - 2017} \right|\)

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Phương pháp:

+) Xét hàm số \(h\left( x \right) = f\left( x \right) - 2017 = a{x^4} + b{x^2} + c - 2017\)

+) Tìm số điểm cực trị của hàm số \(h\left( x \right)\) bằng cách giải phương trình \(h'\left( x \right) = 0\)

+) Xác định dấu của \(h\left( 0 \right);\,\,h\left( 1 \right);\,\,h\left( { - 1} \right)\) và vẽ đồ thị hàm số \(y = h\left( x \right)\), từ đó vẽ đồ thị hàm số \(y = \left| {h\left( x \right)} \right|\) và kết luận.

Cách giải:

Xét hàm số \(h\left( x \right) = f\left( x \right) - 2017 = a{x^4} + b{x^2} + c - 2017\), với \(a > 0,\,c < 2017,\,\,\,a + b + c < 2017\)

Cho hàm số f(x) =ax^4 + bx^2 + c với a > 0, c > 2007, a + b + c < 2017. Số cực trị của hàm số (ảnh 1)

Ta có: \(h'\left( x \right) = 4a{x^3} + 2bx = 2x\left( {2a{x^2} + b} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} = - \frac{b}{{2a}}\end{array} \right.\)

Do \(a > 0,\,b < 0 \Rightarrow - \frac{b}{{2a}} > 0\) nên \(h'\left( x \right) = 0\) có 3 nghiệm phân biệt \( \Rightarrow y = h\left( x \right)\) có 3 cực trị

Ta có: \(h\left( 0 \right) = c - 2017 > 0,\,\,\,h\left( { - 1} \right) = h\left( 1 \right) = a + b + c - 2017 < 0\)

\( \Rightarrow h\left( 0 \right).\left( {h - 1} \right) < 0,\,\,\,h\left( 0 \right).h\left( 1 \right) < 0\)

\( \Rightarrow \exists {x_1},\,{x_2}:{x_1} \in \left( { - 1;0} \right),\,\,\,{x_2} \in \left( {0;1} \right)\)\(h\left( {{x_1}} \right) = h\left( {{x_2}} \right) = 0\)

Do đó, đồ thị hàm số \(y = h\left( x \right)\)\(y = \left| {h\left( x \right)} \right|\) dạng như hình vẽ bên.

Vậy, số cực trị của hàm số \(y = \left| {f\left( x \right) - 2017} \right|\) là 7

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = \frac{{ax + b}}{{x - c}}\) có đồ thị như hình vẽ bên. Tìm khẳng định đúng trong các khẳng định sau

Cho hàm số y = (ax + b) / (x - c) có đồ thị như hình vẽ bên. Tìm khẳng định đúng trong các (ảnh 1)

Xem đáp án » 19/02/2023 9,386

Câu 2:

Hàm số nào sau đây không đồng biến trên khoảng \(\left( { - \infty ; + \infty } \right)\)

Xem đáp án » 19/02/2023 8,334

Câu 3:

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, \(ABC = {120^0}\). Cạnh bên \(SA = \sqrt 3 a\)SA vuông góc với (ABCD). Tính theo a thể tích V của khối chóp S.BCD.

Xem đáp án » 19/02/2023 7,861

Câu 4:

Trong các mệnh đề sau, mệnh đề nào sai?

Xem đáp án » 19/02/2023 6,305

Câu 5:

Tìm nguyên hàm của hàm số \(f\left( x \right) = \frac{2}{{{x^2} - 1}}\)

Xem đáp án » 19/02/2023 4,469

Câu 6:

Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?

Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là (ảnh 1)

Xem đáp án » 19/02/2023 4,459

Câu 7:

Tìm mệnh đề đúng trong các mệnh đề sau

Xem đáp án » 19/02/2023 3,550
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua