Câu hỏi:
19/02/2023 158Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}\left( {x - 1} \right){\left( {x - 4} \right)^2}\). Khi đó số cực trị của hàm số \(y = f\left( {{x^2}} \right)\) là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A
Phương pháp:
Tính và xét dấu của \(f\left( {{x^2}} \right)'\) từ đó tính số cực trị.
Cách giải:
\(y = f\left( {{x^2}} \right) \Rightarrow y' = 2x.f'\left( {{x^2}} \right) = 2x.{\left( {{x^2}} \right)^2}\left( {{x^2} - 1} \right){\left( {{x^2} - 4} \right)^2} = 2{x^5}\left( {{x^2} - 1} \right){\left( {{x^2} - 4} \right)^2}\)
\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm 1\\x = \pm 2\end{array} \right.\), y’ đổi dấu tại các điểm \(x = 0,\,\,x = - 1,\,\,x = 1\)
\( \Rightarrow \) Số cực trị của hàm số \(y = f\left( {{x^2}} \right)\) là 3.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(y = \frac{{ax + b}}{{x - c}}\) có đồ thị như hình vẽ bên. Tìm khẳng định đúng trong các khẳng định sau
Câu 2:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, \(ABC = {120^0}\). Cạnh bên \(SA = \sqrt 3 a\) và SA vuông góc với (ABCD). Tính theo a thể tích V của khối chóp S.BCD.
Câu 3:
Hàm số nào sau đây không đồng biến trên khoảng \(\left( { - \infty ; + \infty } \right)\)
Câu 4:
Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?
Câu 7:
Đạo hàm của hàm số \(y = x\ln x\) trên khoảng \(\left( {0; + \infty } \right)\) là
về câu hỏi!