Câu hỏi:
19/02/2023 337
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, \(AB = a,\,\,AD = \sqrt 2 a\), góc giữa hai mặt phẳng (SAC) và (ABCD) bằng \({60^0}\). Gọi H là trung điểm của AB. Biết rằng tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Tính theo a bán kính mặt cầu ngoại tiếp hình chóp S.HAC.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, \(AB = a,\,\,AD = \sqrt 2 a\), góc giữa hai mặt phẳng (SAC) và (ABCD) bằng \({60^0}\). Gọi H là trung điểm của AB. Biết rằng tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Tính theo a bán kính mặt cầu ngoại tiếp hình chóp S.HAC.
Quảng cáo
Trả lời:
Đáp án C
Phương pháp:
+) Gọi I là tâm đường tròn ngoại tiếp tam giác AHC và E là trung điểm của BC.
+) Qua I dựng đường thẳng song song với SH, qua E dựng đường thẳng song song với IH, hai đường thẳng này cắt nhau tại O \( \Rightarrow \) O là tâm mặt cầu ngoại tiếp chóp S.AHC. O
+) Tính IH, sử dụng công thức \(R = \frac{{abc}}{{4S}}\) với a, b, c là ba cạnh của tam giác AHC, S là diện tích tam giác AHC, R là bán kính đường tròn ngoại tiếp tam giác AHC.
+) Tính HE.
+) Sử dụng định lí Pytago tính OH.
Cách giải


Kẻ HK vuông góc AB tại K, gọi I là tâm đường tròn ngoại tiếp tam giác AHC, E là trung điểm của SH.
Ta có: H là trung điểm của AB, tam giác SAB cân tại S \( \Rightarrow SH \bot AB\)
Mà SAB nằm trong mặt phẳng vuông góc với đáy \( \Rightarrow SH \bot \left( {ABCD} \right)\)
\(\Delta AHK\) đồng dạng \(\Delta ACB\) (g.g)
\( \Rightarrow \frac{{AH}}{{AC}} = \frac{{HK}}{{BC}} \Leftrightarrow \frac{{\frac{a}{2}}}{{\sqrt {{a^2} + {{\left( {\sqrt 2 a} \right)}^2}} }} = \frac{{HK}}{{\sqrt 2 a}} \Leftrightarrow HK = \frac{a}{{\sqrt 6 }}\)
Ta có: \(HK \bot AC,\,\,\,SH \bot AC \Rightarrow AC \bot \left( {SHK} \right) \Rightarrow AC \bot SK\)
\( \Rightarrow \left( {\left( {SAC} \right);\left( {ABCD} \right)} \right) = SKH = {60^0}\)
\(\Delta SKH\) vuông tại H, \(SKH = {60^0} \Rightarrow SH = HK.\tan {60^0} = \frac{a}{{\sqrt 6 }}.\sqrt 3 = \frac{a}{{\sqrt 2 }} \Rightarrow EH = \frac{a}{{2\sqrt 2 }}\)
Ta có: \({S_{\Delta AHC}} = \frac{1}{2}{S_{\Delta ABC}} = \frac{1}{2}.\frac{1}{2}.{S_{ABCD}} = \frac{{{S_{ABCD}}}}{4} = \frac{{{a^2}\sqrt 2 }}{4}\)
I là tâm đường tròn ngoại tiếp tam giác AHB
\( \Rightarrow IH = R = \frac{{AH.HC.AC}}{{4{S_{\Delta AHC}}}} = \frac{{\frac{a}{2}.\sqrt {{{\left( {\frac{a}{2}} \right)}^2} + {{\left( {\sqrt 2 a} \right)}^2}} .\sqrt {{a^2} + {{\left( {\sqrt 2 a} \right)}^2}} }}{{4.\frac{{{a^2}\sqrt 2 }}{4}}} = \frac{{\frac{a}{2}.\frac{{3a}}{2}.\sqrt 3 a}}{{{a^2}\sqrt 2 }} = \frac{{3\sqrt 3 a}}{{4\sqrt 2 }}\)
Tứ giác OEHI là hình chữ nhật
\( \Rightarrow OH = \sqrt {I{H^2} + E{H^2}} = \sqrt {{{\left( {\frac{{3\sqrt 2 a}}{{4\sqrt 2 }}} \right)}^2} + {{\left( {\frac{a}{{2\sqrt 2 }}} \right)}^2}} = \sqrt {\frac{{27{a^2}}}{{32}} + \frac{{{a^2}}}{8}} = \frac{{\sqrt {62} a}}{8}\)
Vậy, bán kính mặt cầu ngoại tiếp hình chóp S.HAC là \(\frac{{\sqrt {62} a}}{8}\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án C
Phương pháp:
Đồ thị hàm số \(y = \frac{{ax + b}}{{x - c}}\) có hai đường tiệm cận: \(x = c\) và \(y = a\), đồng thời cắt trục hoành tại điểm \(\left( { - \frac{b}{a};0} \right)\)
Cách giải:
Quan sát đồ thị hàm số ta thấy: Đồ thị hàm số có tiệm cận đứng \(x = {x_0} < 0 \Rightarrow c < 0\), đồ thị hàm số có tiệm cận ngang \(y = {y_0} > 0 \Rightarrow a > 0\)
Đồ thị hàm số cắt trục hoành tại điểm\(\left( {x{'_0};0} \right),\,\,x{'_0} > 0 \Rightarrow - \frac{b}{a} > 0\)
Mà \(a > 0 \Rightarrow b < 0\)
Vậy \(a > 0,\,\,b < 0,\,\,c < 0\)
Lời giải
Đáp án A
Phương pháp:
* Phương pháp xét sự đồng biến, nghịch biến của các hàm số:
- Bước 1: Tìm tập xác định, tính \(f'\left( x \right)\)
- Bước 2: Tìm các điểm tại đó \(f'\left( x \right) = 0\) hoặc \(f'\left( x \right)\) không xác định
- Bước 3: Sắp xếp các điểm đó theo thứ tự tăng dần và lập bảng biến thiên
- Bước 4: Kết luận về các khoảng đồng biến, nghịch biến của hàm số.
Cách giải:
+) \(y = \frac{{x - 1}}{{x + 2}}\) ta có \(y' = \frac{{2 + 1}}{{{{\left( {x + 2} \right)}^2}}} = \frac{3}{{{{\left( {x + 2} \right)}^2}}} > 0,\,\,\forall x \ne - 2 \Rightarrow \) Hàm số đồng biến trên các khoảng \(\left( { - \infty ; - 2} \right);\,\,\,\left( { - 2; + \infty } \right)\)
+) \(y = {x^3} + 2 \Rightarrow y' = 3{x^2} \ge 0,\,\,\forall x \in \mathbb{R}\): Hàm số đồng biến trên \(\mathbb{R}\).
+) \(y = x + 1 \Rightarrow y' = 1 > 0,\,\,\forall x \in \mathbb{R}\): Hàm số đồng biến trên \(\mathbb{R}\).
+) \(y = {x^5} + {x^3} - 1 \Rightarrow y' = 5{x^4} + 3{x^2} \ge 0,\,\,\forall x \in \mathbb{R};\,\,\,y' = 0 \Leftrightarrow x = 0 \Rightarrow \) Hàm số đồng biến trên \(\mathbb{R}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.