Câu hỏi:

19/02/2023 145

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, \(AB = a,\,\,AD = \sqrt 2 a\), góc giữa hai mặt phẳng (SAC) (ABCD) bằng \({60^0}\). Gọi H là trung điểm của AB. Biết rằng tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Tính theo a bán kính mặt cầu ngoại tiếp hình chóp S.HAC.

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp:

+) Gọi I là tâm đường tròn ngoại tiếp tam giác AHC và E là trung điểm của BC.

+) Qua I dựng đường thẳng song song với SH, qua E dựng đường thẳng song song với IH, hai đường thẳng này cắt nhau tại O \( \Rightarrow \) O là tâm mặt cầu ngoại tiếp chóp S.AHC. O

+) Tính IH, sử dụng công thức \(R = \frac{{abc}}{{4S}}\) với a, b, c là ba cạnh của tam giác AHC, S là diện tích tam giác AHC, R là bán kính đường tròn ngoại tiếp tam giác AHC.

+) Tính HE.

+) Sử dụng định lí Pytago tính OH.

Cách giải

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = căn bậc hai a, góc giữa (ảnh 1)
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = căn bậc hai a, góc giữa (ảnh 2)

Kẻ HK vuông góc AB tại K, gọi I là tâm đường tròn ngoại tiếp tam giác AHC, E là trung điểm của SH.

Ta có: H là trung điểm của AB, tam giác SAB cân tại S \( \Rightarrow SH \bot AB\)

SAB nằm trong mặt phẳng vuông góc với đáy \( \Rightarrow SH \bot \left( {ABCD} \right)\)

\(\Delta AHK\) đồng dạng \(\Delta ACB\) (g.g)

\( \Rightarrow \frac{{AH}}{{AC}} = \frac{{HK}}{{BC}} \Leftrightarrow \frac{{\frac{a}{2}}}{{\sqrt {{a^2} + {{\left( {\sqrt 2 a} \right)}^2}} }} = \frac{{HK}}{{\sqrt 2 a}} \Leftrightarrow HK = \frac{a}{{\sqrt 6 }}\)

Ta có: \(HK \bot AC,\,\,\,SH \bot AC \Rightarrow AC \bot \left( {SHK} \right) \Rightarrow AC \bot SK\)

\( \Rightarrow \left( {\left( {SAC} \right);\left( {ABCD} \right)} \right) = SKH = {60^0}\)

\(\Delta SKH\) vuông tại H, \(SKH = {60^0} \Rightarrow SH = HK.\tan {60^0} = \frac{a}{{\sqrt 6 }}.\sqrt 3 = \frac{a}{{\sqrt 2 }} \Rightarrow EH = \frac{a}{{2\sqrt 2 }}\)

Ta có: \({S_{\Delta AHC}} = \frac{1}{2}{S_{\Delta ABC}} = \frac{1}{2}.\frac{1}{2}.{S_{ABCD}} = \frac{{{S_{ABCD}}}}{4} = \frac{{{a^2}\sqrt 2 }}{4}\)

I là tâm đường tròn ngoại tiếp tam giác AHB

\( \Rightarrow IH = R = \frac{{AH.HC.AC}}{{4{S_{\Delta AHC}}}} = \frac{{\frac{a}{2}.\sqrt {{{\left( {\frac{a}{2}} \right)}^2} + {{\left( {\sqrt 2 a} \right)}^2}} .\sqrt {{a^2} + {{\left( {\sqrt 2 a} \right)}^2}} }}{{4.\frac{{{a^2}\sqrt 2 }}{4}}} = \frac{{\frac{a}{2}.\frac{{3a}}{2}.\sqrt 3 a}}{{{a^2}\sqrt 2 }} = \frac{{3\sqrt 3 a}}{{4\sqrt 2 }}\)

Tứ giác OEHI là hình chữ nhật

\( \Rightarrow OH = \sqrt {I{H^2} + E{H^2}} = \sqrt {{{\left( {\frac{{3\sqrt 2 a}}{{4\sqrt 2 }}} \right)}^2} + {{\left( {\frac{a}{{2\sqrt 2 }}} \right)}^2}} = \sqrt {\frac{{27{a^2}}}{{32}} + \frac{{{a^2}}}{8}} = \frac{{\sqrt {62} a}}{8}\)

Vậy, bán kính mặt cầu ngoại tiếp hình chóp S.HAC \(\frac{{\sqrt {62} a}}{8}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = \frac{{ax + b}}{{x - c}}\) có đồ thị như hình vẽ bên. Tìm khẳng định đúng trong các khẳng định sau

Cho hàm số y = (ax + b) / (x - c) có đồ thị như hình vẽ bên. Tìm khẳng định đúng trong các (ảnh 1)

Xem đáp án » 19/02/2023 7,942

Câu 2:

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, \(ABC = {120^0}\). Cạnh bên \(SA = \sqrt 3 a\)SA vuông góc với (ABCD). Tính theo a thể tích V của khối chóp S.BCD.

Xem đáp án » 19/02/2023 6,577

Câu 3:

Hàm số nào sau đây không đồng biến trên khoảng \(\left( { - \infty ; + \infty } \right)\)

Xem đáp án » 19/02/2023 6,517

Câu 4:

Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?

Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là (ảnh 1)

Xem đáp án » 19/02/2023 3,652

Câu 5:

Trong các mệnh đề sau, mệnh đề nào sai?

Xem đáp án » 19/02/2023 3,131

Câu 6:

Tìm mệnh đề đúng trong các mệnh đề sau

Xem đáp án » 19/02/2023 2,248

Câu 7:

Đạo hàm của hàm số \(y = x\ln x\) trên khoảng \(\left( {0; + \infty } \right)\)

Xem đáp án » 19/02/2023 1,809

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL