Câu hỏi:

19/02/2023 182

Cho hình nón đỉnh S, đáy là đường tròn (O; r). Một mặt phẳng đi qua đỉnh của hình nón cắt đường tròn đáy tại hai điểm A B sao cho \(SA = AB = \frac{{8r}}{5}\). Tính theo r khoảng cách từ O đến (SAB).

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Phương pháp:

+) Xác định khoảng cách từ O đến (SAB)

+) Sử dụng hệ thức lượng trong tam giác vuông để tính khoảng cách vừa xác định được.

Cách giải:

Gọi I là trung điểm của AB, kẻ OH vuông góc SI tại H.

Ta có: \(\left\{ \begin{array}{l}OI \bot AB\\SO \bot AB\end{array} \right. \Rightarrow AB \bot \left( {SOI} \right) \Rightarrow AB \bot OH\)

\(SI \bot OH \Rightarrow OH \bot \left( {SAB} \right) \Rightarrow d\left( {O;\left( {SAB} \right)} \right) = OH\)

Ta có: \(AB = \frac{{8r}}{5} \Rightarrow AI = \frac{{4r}}{5}\)

\(\Delta SAI\) vuông tại I \( \Rightarrow SI = \sqrt {S{A^2} - A{I^2}} = \sqrt {{{\left( {\frac{{8r}}{5}} \right)}^2} - {{\left( {\frac{{4r}}{5}} \right)}^2}} = \frac{{4\sqrt 3 r}}{5}\)

\(\Delta OAI\) vuông tại I \( \Rightarrow OI = \sqrt {O{A^2} - A{I^2}} = \sqrt {{r^2} - {{\left( {\frac{{4r}}{5}} \right)}^2}} = \frac{{3r}}{5}\)

\(\Delta SOI\) vuông tại O \( \Rightarrow OS = \sqrt {S{I^2} - O{I^2}} = \sqrt {{{\left( {\frac{{4\sqrt 3 r}}{5}} \right)}^2} - {{\left( {\frac{{3r}}{5}} \right)}^2}} = \frac{{\sqrt {39} r}}{5}\)

\(\Delta SOI\) vuông tại O, \(OH \bot SI \Rightarrow OH.SI = SO.OI \Leftrightarrow OH.\frac{{4\sqrt 3 r}}{5} = \frac{{\sqrt {39} r}}{5}.\frac{{3r}}{5} \Leftrightarrow OH = \frac{{3\sqrt {13} r}}{{20}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = \frac{{ax + b}}{{x - c}}\) có đồ thị như hình vẽ bên. Tìm khẳng định đúng trong các khẳng định sau

Cho hàm số y = (ax + b) / (x - c) có đồ thị như hình vẽ bên. Tìm khẳng định đúng trong các (ảnh 1)

Xem đáp án » 19/02/2023 9,095

Câu 2:

Hàm số nào sau đây không đồng biến trên khoảng \(\left( { - \infty ; + \infty } \right)\)

Xem đáp án » 19/02/2023 7,257

Câu 3:

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, \(ABC = {120^0}\). Cạnh bên \(SA = \sqrt 3 a\)SA vuông góc với (ABCD). Tính theo a thể tích V của khối chóp S.BCD.

Xem đáp án » 19/02/2023 6,810

Câu 4:

Trong các mệnh đề sau, mệnh đề nào sai?

Xem đáp án » 19/02/2023 4,164

Câu 5:

Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?

Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là (ảnh 1)

Xem đáp án » 19/02/2023 4,041

Câu 6:

Tìm nguyên hàm của hàm số \(f\left( x \right) = \frac{2}{{{x^2} - 1}}\)

Xem đáp án » 19/02/2023 2,616

Câu 7:

Tìm mệnh đề đúng trong các mệnh đề sau

Xem đáp án » 19/02/2023 2,418

Bình luận


Bình luận