Câu hỏi:
19/02/2023 77Tìm m để phương trình \({2^{\left| x \right|}} = \sqrt {{m^2} - {x^2}} \) có 2 nghiệm phân biệt.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A
Phương pháp:
+) Số nghiệm của phương trình \({2^{\left| x \right|}} = \sqrt {{m^2} - {x^2}} \) là số giao điểm của đồ thị hàm số \(y = {2^{\left| x \right|}}\) và \(y = \sqrt {{m^2} - {x^2}} \)
+) Vẽ hai đồ thị hàm số trên cùng hệ trục tọa độ và biện luận.
Cách giải:
Số nghiệm của phương trình \({2^{\left| x \right|}} = \sqrt {{m^2} - {x^2}} \) bằng số giao điểm của đồ thị hàm số \(y = {2^{\left| x \right|}}\) và \(y = \sqrt {{m^2} - {x^2}} \)
Trong đó, \(y = \sqrt {{m^2} - {x^2}} \) có đồ thị là nửa đường tròn \({x^2} + {y^2} = {m^2}\) (phần nằm phía trên trục hoành)
Quan sát đồ thị, ta thấy: để 2 đồ thị cắt nhau tại 2 điểm phân biệt thì bán kính của đường tròn \({x^2} + {y^2} = {m^2}\) phải lớn hơn 1 \( \Rightarrow \left| m \right| > 1 \Leftrightarrow \left[ \begin{array}{l}m < 1\\m < - 1\end{array} \right.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(y = \frac{{ax + b}}{{x - c}}\) có đồ thị như hình vẽ bên. Tìm khẳng định đúng trong các khẳng định sau
Câu 2:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, \(ABC = {120^0}\). Cạnh bên \(SA = \sqrt 3 a\) và SA vuông góc với (ABCD). Tính theo a thể tích V của khối chóp S.BCD.
Câu 3:
Hàm số nào sau đây không đồng biến trên khoảng \(\left( { - \infty ; + \infty } \right)\)
Câu 4:
Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?
Câu 7:
Đạo hàm của hàm số \(y = x\ln x\) trên khoảng \(\left( {0; + \infty } \right)\) là
về câu hỏi!