Câu hỏi:
20/02/2023 148
Tính giá trị nhỏ nhất M của hàm số \(y = - {x^3} + 3{x^2} + 2\) trên đoạn \(\left[ {1;3} \right]\)
Tính giá trị nhỏ nhất M của hàm số \(y = - {x^3} + 3{x^2} + 2\) trên đoạn \(\left[ {1;3} \right]\)
Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
- Tìm TXĐ
- Tìm nghiệm và các điểm không xác định của y’.
- Tính giá trị của hàm số tại các điểm trên, từ đó đánh giá giá trị nhỏ nhất của hàm số trên đoạn \(\left[ {1;3} \right]\)
Cách giải:
\(y = - {x^3} + 3{x^2} + 2 \Rightarrow y' = - 3{x^2} + 6x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\left( L \right)\\x = 2\end{array} \right.\)
Ta có: \(y\left( 1 \right) = 4,\,\,y\left( 2 \right) = 6,\,\,y\left( 3 \right) = 2 \Rightarrow \mathop {\min }\limits_{\left[ {1;3} \right]} = 2\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án C
Phương pháp:
Biến đổi, đặt \({\log _2}\left( {{5^x} - 1} \right) = t,\,\,t \ge 2\)
Cách giải:
\({\log _2}\left( {{5^x} - 1} \right).{\log _4}\left( {{{2.5}^x}} \right) - 2 = m\)
\( \Leftrightarrow {\log _2}\left( {{5^x} - 1} \right).{\log _{{2^2}}}\left( {{{2.5}^x}} \right) - 1 = m\)
\( \Leftrightarrow \frac{1}{2}{\log _2}\left( {{5^x} - 1} \right).1 + {\log _2}\left( {{5^x} - 1} \right) = m\)
\( \Leftrightarrow \log _2^2\left( {{5^x} - 1} \right) + {\log _2}\left( {{5^x} - 1} \right) - 2m = 0\)
Đặt \({\log _2}\left( {{5^x} - 1} \right) = t,\,\,t \ge 2\), phương trình trở thành: \({t^2} + t = 2m = 0,\,\,t \ge 2 \Leftrightarrow {t^2} + t = 2m,\,\,t \ge 2\left( * \right)\)
Xét hàm số \(f\left( t \right) = {t^2} + t,\,\,t \ge 2\) có: \(f'\left( t \right) = 2t + 1 > 0,\,\,\,\forall t \ge 2 \Rightarrow \) Hàm số đồng biến trên khoảng \(\left[ {2; + \infty } \right)\)

Để phương trình (*) có nghiệm thì \(2m \ge 6 \Leftrightarrow m \ge 3\)
Lời giải
Đáp án D
Phương pháp:
Dựa vào cách vẽ đồ thị hàm số các hàm có chứa trị tuyệt đối.
Cách giải:
Đồ thị hình 2 là của hàm số \(y = \left| {\ln x} \right|\) được dựng từ đồ thị ở Hình 1, bằng cách: giữ nguyên phần đồ thị nằm phía trên trục hoành, lấy đối xứng phần đồ thị nằm phía dưới trục hoành qua trục hoành.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.