Câu hỏi:

20/02/2023 182

Tìm giá trị lớn nhất M và nhỏ nhất m của hàm số \(y = \sin 2x - {\cos ^2}2x + 1\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp:

Đặt \(\sin 2x = t,\,\,t \in \left[ { - 1;1} \right]\), khảo sát, tìm giá trị nhỏ nhất, lớn nhất của hàm số với ẩn là t.

Cách giải: \(y = \sin 2x - {\cos ^2}2x + 1 = {\sin ^2}2x + \sin 2x\)

Đặt \(\sin 2x = t,\,\,t \in \left[ { - 1;1} \right]\), ta có: \(y = {t^2} + t = f\left( t \right),\,\,\,y' = 2t + 1,\,\,\,y' = 0 \Leftrightarrow t = - \frac{1}{2}\)

Ta có: \(f\left( { - 1} \right) = 0,\,\,f\left( { - \frac{1}{2}} \right) = - \frac{1}{4},\,\,\,f\left( 1 \right) = 2 \Rightarrow \mathop {\min }\limits_{\left[ { - 1;1} \right]} y = - \frac{1}{4},\,\,\,\mathop {\max }\limits_{\left[ { - 1;1} \right]} y = 2\) hay \(M = 2;\,\,\,m = - \frac{1}{4}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án C

Phương pháp:

Biến đổi, đặt \({\log _2}\left( {{5^x} - 1} \right) = t,\,\,t \ge 2\)

Cách giải:

    \({\log _2}\left( {{5^x} - 1} \right).{\log _4}\left( {{{2.5}^x}} \right) - 2 = m\)

\( \Leftrightarrow {\log _2}\left( {{5^x} - 1} \right).{\log _{{2^2}}}\left( {{{2.5}^x}} \right) - 1 = m\)

\( \Leftrightarrow \frac{1}{2}{\log _2}\left( {{5^x} - 1} \right).1 + {\log _2}\left( {{5^x} - 1} \right) = m\)

\( \Leftrightarrow \log _2^2\left( {{5^x} - 1} \right) + {\log _2}\left( {{5^x} - 1} \right) - 2m = 0\)

Đặt \({\log _2}\left( {{5^x} - 1} \right) = t,\,\,t \ge 2\), phương trình trở thành: \({t^2} + t = 2m = 0,\,\,t \ge 2 \Leftrightarrow {t^2} + t = 2m,\,\,t \ge 2\left( * \right)\)

Xét hàm số \(f\left( t \right) = {t^2} + t,\,\,t \ge 2\) có: \(f'\left( t \right) = 2t + 1 > 0,\,\,\,\forall t \ge 2 \Rightarrow \) Hàm số đồng biến trên khoảng \(\left[ {2; + \infty } \right)\)

Tìm tất cả các giá trị thực của tham số m để phương trình log2 (5^x - 1).log4 (2.5^x) - 2 = m (ảnh 1)

Để phương trình (*) có nghiệm thì \(2m \ge 6 \Leftrightarrow m \ge 3\)

Câu 2

Lời giải

Đáp án D

Phương pháp:

Dựa vào cách vẽ đồ thị hàm số các hàm có chứa trị tuyệt đối.

Cách giải:

Đồ thị hình 2 là của hàm số \(y = \left| {\ln x} \right|\) được dựng từ đồ thị ở Hình 1, bằng cách: giữ nguyên phần đồ thị nằm phía trên trục hoành, lấy đối xứng phần đồ thị nằm phía dưới trục hoành qua trục hoành.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP