Câu hỏi:
20/02/2023 174Cho khối lăng trụ ABC.A'B'C' . Gọi M là trung điểm của AA' . Mặt phẳng \(\left( {BCM} \right)\) chia khối lăng trụ ABC.A'B'C' thành hai khối. Tính tỉ số thể tích (số lớn chia số bé) của hai khối đó.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án D
Phương pháp:
Lập tỉ lệ thể tích của hai khối trên với thể tích của khối lăng trụ ABC.A'B'C' .
Cách giải:
Đặt \({V_{ABC.A'B'C'}} = V\). Khi đó: \(\frac{{{V_{M.ABC}}}}{V} = \frac{1}{3}.\frac{1}{2} = \frac{1}{6} \Rightarrow {V_{M.ABC}} = \frac{V}{6}\)
\( \Rightarrow {V_{MBC.A'B'C'}} = V - \frac{V}{6} = \frac{{5V}}{6} \Rightarrow \frac{{{V_{MBC.A'B'C'}}}}{{{V_{M.ABC}}}} = \frac{{\frac{{5V}}{6}}}{{\frac{V}{6}}} = 5\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hàm số \(y = \ln x\) có đồ thị như hình 1. Đồ thị hình 2 là của hàm số nào dưới đây ?
Câu 3:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, biết \(SA \bot \left( {ABC} \right),\,\,SA = a,\,\,AB = 2a,\,\,AC = 3a\). Tính bán kính r của mặt cầu ngoại tiếp hình chóp S.ABC.
Câu 4:
Cho a, b, x, y là các số thực dương khác 1. Khẳng định nào sau đây đúng?
Câu 5:
Cho hàm số \(y = \frac{{3x - 4}}{{x + 1}}\). Khẳng định nào sau đây sai?
Câu 6:
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số \(y = \frac{{{m^2}x - 4}}{{mx - 1}}\) có tiệm cận đi qua điểm \(A\left( {1;4} \right)\)
Câu 7:
Tìm tất cả các giá trị thực của tham số m để đường thẳng \(y = - mx\) cắt đồ thị hàm số \(y = {x^3} - 3{x^2} - m + 2\) tại ba điểm A, B, C phân biệt sao cho \(AB = BC\).
về câu hỏi!