Câu hỏi:
20/02/2023 150Tìm tập nghiệm của bất phương trình \({\log _x}125x + {\log _{24}}x > \frac{3}{2} + \log _5^2x\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án D
Phương pháp:
+) Tìm TXĐ.
+) Đưa phương trình về ẩn \({\log _5}x\)
Cách giải:
ĐKXĐ: \(x > 0,\,\,x \ne 1\)
\({\log _x}\left( {125x} \right).{\log _{25}}x > \frac{3}{2} + \log _5^2x\)
\( \Leftrightarrow {\log _x}125 + 1.{\log _{25}}x > \frac{3}{2} + \log _5^2x\)
\( \Leftrightarrow 3{\log _x}5 + 1.\frac{1}{2}{\log _5}x > \frac{3}{2} + \log _5^2x\)
\( \Leftrightarrow \left( {\frac{3}{{{{\log }_5}x}} + 1} \right){\log _5}x > 3 + 2\log _5^2x\)
\( \Leftrightarrow 3 + {\log _5}x > 3 + 2\log _5^2x \Leftrightarrow 2\log _5^2x - {\log _5}x < 0\)
\( \Leftrightarrow 0 < {\log _5}x < \frac{1}{2} \Leftrightarrow 1 < x < \sqrt 5 \)
Vậy, bất phương trình có tập nghiệm \(S = \left( {1;\sqrt 5 } \right)\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hàm số \(y = \ln x\) có đồ thị như hình 1. Đồ thị hình 2 là của hàm số nào dưới đây ?
Câu 3:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, biết \(SA \bot \left( {ABC} \right),\,\,SA = a,\,\,AB = 2a,\,\,AC = 3a\). Tính bán kính r của mặt cầu ngoại tiếp hình chóp S.ABC.
Câu 4:
Cho a, b, x, y là các số thực dương khác 1. Khẳng định nào sau đây đúng?
Câu 5:
Cho hàm số \(y = \frac{{3x - 4}}{{x + 1}}\). Khẳng định nào sau đây sai?
Câu 6:
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số \(y = \frac{{{m^2}x - 4}}{{mx - 1}}\) có tiệm cận đi qua điểm \(A\left( {1;4} \right)\)
Câu 7:
Tìm tất cả các giá trị thực của tham số m để đường thẳng \(y = - mx\) cắt đồ thị hàm số \(y = {x^3} - 3{x^2} - m + 2\) tại ba điểm A, B, C phân biệt sao cho \(AB = BC\).
về câu hỏi!