Câu hỏi:
20/02/2023 220Người ta đặt được vào một hình nón hai khối cầu có bán kính lần lượt là a và 2a sao cho các khối cầu đều tiếp xúc với mặt xung quanh của hình nón, hai khối cầu tiếp xúc với nhau và khối cầu lớn tiếp xúc với đáy của hình nón. Tính bán kính đáy r của hình nón đã cho.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án B
Cách giải:
Ta có: \({O_1}E \bot SB,\,\,\,{O_2}E \bot SB \Rightarrow {O_1}E//{O_2}E\)
Mà \({O_1}E = \frac{1}{2}{O_2}E \Rightarrow {O_1}E\) là đường trung bình của tam giác \(S{O_2}F \Rightarrow S{O_1} = {O_1}{O_2} = a + 2a = 3a\)
\(\Delta SE{O_1}\) vuông tại E \( \Rightarrow SE = \sqrt {SO_1^2 - {O_1}{E^2}} = \sqrt {{{\left( {3a} \right)}^2} - {a^2}} = 2\sqrt 2 a\)
Đoạn \(SH = S{O_1} + {O_1}{O_2} + {O_2}H = 3a + 3a + 2a = 8a\)
\(\Delta SE{O_1}\) đồng dạng \(\Delta SHB \Rightarrow \frac{{SE}}{{SH}} = \frac{{{O_1}E}}{{HB}} \Leftrightarrow \frac{{2\sqrt 2 a}}{{8a}} = \frac{a}{{HB}} \Rightarrow HB = 2\sqrt 2 a\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hàm số \(y = \ln x\) có đồ thị như hình 1. Đồ thị hình 2 là của hàm số nào dưới đây ?
Câu 3:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, biết \(SA \bot \left( {ABC} \right),\,\,SA = a,\,\,AB = 2a,\,\,AC = 3a\). Tính bán kính r của mặt cầu ngoại tiếp hình chóp S.ABC.
Câu 4:
Cho a, b, x, y là các số thực dương khác 1. Khẳng định nào sau đây đúng?
Câu 5:
Cho hàm số \(y = \frac{{3x - 4}}{{x + 1}}\). Khẳng định nào sau đây sai?
Câu 6:
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số \(y = \frac{{{m^2}x - 4}}{{mx - 1}}\) có tiệm cận đi qua điểm \(A\left( {1;4} \right)\)
Câu 7:
Tìm tất cả các giá trị thực của tham số m để đường thẳng \(y = - mx\) cắt đồ thị hàm số \(y = {x^3} - 3{x^2} - m + 2\) tại ba điểm A, B, C phân biệt sao cho \(AB = BC\).
về câu hỏi!