Câu hỏi:

20/02/2023 442

2. Phần dành cho học sinh chuyên

Cho hai số thực dương a, b khác 1. Biết rằng bất kì đường thẳng nào song song với trục hoành mà cắt các đường \(y = {a^x},\,\,y = {b^x}\) và trục tung lần lượt tại M, N, A thì \(2AN = 5AM\) (hình vẽ bên). Hỏi khẳng định nào sau đây đúng?

Cho hai số thực dương a, b khác 1. Biết rằng bất kì đường thẳng nào song song với trục hoành (ảnh 1)

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Phương pháp:

+) Gọi \(M\left( {{x_M};{a^{{x_M}}}} \right);\,\,\,N\left( {{x_N};{a^{{x_N}}}} \right)\)

+) Từ \(2AN = 5BM \Rightarrow \) mối liên hệ giữa \({x_M};\,\,{x_N}\) từ đó suy ra mối liên hệ giữa a và b.

Cách giải:

Theo đề bài: \(2AN = 5AM \Leftrightarrow 2\left| {{x_N}} \right| = 5\left| {{x_M}} \right| \Leftrightarrow 2{x_N} = - 5{x_M}\) (do M, N nằm khác phía so với trục Oy)

\( \Leftrightarrow {x_N} = \frac{{ - 5}}{2}{x_M}\)

Tung độ các điểm M, N \({a^{{x_M}}} = {b^{{x_N}}} \Leftrightarrow {a^{{x_M}}} = {b^{\frac{{ - 5}}{2}{x_M}}} = {\left( {{b^{\frac{{ - 5}}{2}}}} \right)^{{x_M}}}\)

Do M tùy ý nên \(a = {b^{ - \frac{5}{2}}} \Leftrightarrow a{b^{\frac{5}{2}}} = 1 \Leftrightarrow {a^2}{b^5} = 1\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hình đa diện bên có bao nhiêu mặt?

Hình đa diện bên có bao nhiêu mặt A. 6 B. 10 C. 11 D. 12 (ảnh 1)

Xem đáp án » 20/02/2023 1,811

Câu 2:

Cho hàm số \(y = \ln x\) có đồ thị như hình 1. Đồ thị hình 2 là của hàm số nào dưới đây ?

Cho hàm số y = ln x có đồ thị như hình 1. Đồ thị hình 2 là của hàm số nào dưới đây  (ảnh 1)

Xem đáp án » 20/02/2023 1,633

Câu 3:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, biết \(SA \bot \left( {ABC} \right),\,\,SA = a,\,\,AB = 2a,\,\,AC = 3a\). Tính bán kính r của mặt cầu ngoại tiếp hình chóp S.ABC.

Xem đáp án » 20/02/2023 1,595

Câu 4:

Cho a, b, x, y là các số thực dương khác 1. Khẳng định nào sau đây đúng?

Xem đáp án » 20/02/2023 1,575

Câu 5:

Cho hàm số \(y = \frac{{3x - 4}}{{x + 1}}\). Khẳng định nào sau đây sai?

Xem đáp án » 20/02/2023 1,094

Câu 6:

Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số \(y = \frac{{{m^2}x - 4}}{{mx - 1}}\) có tiệm cận đi qua điểm \(A\left( {1;4} \right)\)

Xem đáp án » 20/02/2023 1,041

Câu 7:

Tìm tất cả các giá trị thực của tham số m để đường thẳng \(y = - mx\) cắt đồ thị hàm số \(y = {x^3} - 3{x^2} - m + 2\) tại ba điểm A, B, C phân biệt sao cho \(AB = BC\).

Xem đáp án » 20/02/2023 967

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL