Câu hỏi:
20/02/2023 95Cho tứ diện đều ABC có cạnh 3a. Hình nón \(\left( N \right)\) có đỉnh A và đường tròn đáy là đường tròn ngoại tiếp tam giác BCD. Tính diện tích xung quanh của hình nón \(\left( N \right)\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
Diện tích xung quanh của hình nón \({S_{xq}} = \pi rl\)
Cách giải:
Gọi O là tâm của tam giác BCD \( \Rightarrow AO \bot \left( {BCD} \right)\)
\(OD = \frac{2}{3}.\frac{{3a\sqrt 3 }}{2} = a\sqrt 3 \)
Diện tích xung quanh của hình nón \({S_{xq}} = \pi .OD.AD = \pi .a\sqrt 3 .3a = 3\sqrt 3 \pi {a^2}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hàm số \(y = \ln x\) có đồ thị như hình 1. Đồ thị hình 2 là của hàm số nào dưới đây ?
Câu 3:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, biết \(SA \bot \left( {ABC} \right),\,\,SA = a,\,\,AB = 2a,\,\,AC = 3a\). Tính bán kính r của mặt cầu ngoại tiếp hình chóp S.ABC.
Câu 4:
Cho a, b, x, y là các số thực dương khác 1. Khẳng định nào sau đây đúng?
Câu 5:
Cho hàm số \(y = \frac{{3x - 4}}{{x + 1}}\). Khẳng định nào sau đây sai?
Câu 6:
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số \(y = \frac{{{m^2}x - 4}}{{mx - 1}}\) có tiệm cận đi qua điểm \(A\left( {1;4} \right)\)
Câu 7:
Tìm tất cả các giá trị thực của tham số m để đường thẳng \(y = - mx\) cắt đồ thị hàm số \(y = {x^3} - 3{x^2} - m + 2\) tại ba điểm A, B, C phân biệt sao cho \(AB = BC\).
về câu hỏi!