Câu hỏi:
20/02/2023 1,032Cho hàm số \(y = f\left( x \right)\) có bảng xét dấu đạo hàm như sau:
Hàm số \(y = 3f\left( {x + 3} \right) - {x^3} + 12x\) nghịch biến trên khoảng nào sau đây?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Chọn D
Ta có \(y' = 3f'\left( {x + 3} \right) - 3{x^2} + 12 = 3\left[ {f'\left( {x + 3} \right) + \left( {4 - {x^2}} \right)} \right]\)
Từ bảng xét dấu của \(f'\left( x \right)\) ta có \(f'\left( {x + 3} \right) < 0 \Leftrightarrow \left[ \begin{array}{l} - 1 < x + 3 < 1\\5 < x + 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - 4 < x < - 2\\x > 2\end{array} \right.\);
\(f'\left( {x + 3} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = - 4\\x = \pm 2\end{array} \right.\).
Suy ra bảng xét dấu \(y'\) như sau
Vậy hàm số \(y = 3f\left( {x + 3} \right) - {x^3} + 12x\) nghịch biến trên khoảng \(\left( {2; + \infty } \right)\) và \(\left( { - 4; - 2} \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho hàm số \[y = \frac{{ax + b}}{{cx + d}}\] có đồ thị như hình vẽ.
Khẳng định nào sau đây đúng?
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
về câu hỏi!