Câu hỏi:
20/02/2023 95Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Chọn B
Ta có \(g\left( x \right) = 2f\left( {\frac{{5\sin x - 1}}{2}} \right) + {\left( {\frac{{5\sin x - 1}}{2}} \right)^2} + 3\)
\[g'\left( x \right) = \frac{{5\cos x}}{2}\left[ {2f'\left( {\frac{{5\sin x - 1}}{2}} \right) + 2.\left( {\frac{{5\sin x - 1}}{2}} \right)} \right] = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos x = 0}\\{2f'\left( {\frac{{5\sin x - 1}}{2}} \right) + 2.\left( {\frac{{5\sin x - 1}}{2}} \right) = 0}\end{array}} \right.\]
Đặt \[t = \frac{{5\sin x - 1}}{2}\]vì \(x \in \left( {0\,;\,2\pi } \right) \Rightarrow t \in \left[ { - 3;2} \right]\)
Khi đó: \[2f'\left( {\frac{{5\sin x - 1}}{2}} \right) + 2.\left( {\frac{{5\sin x - 1}}{2}} \right) = 0\]thành \[f'\left( t \right) = - t \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{t = 1}\\{t = \frac{1}{3}\,}\end{array}}\\{\begin{array}{*{20}{c}}{t = - 1}\\{t = - 3}\end{array}}\end{array}} \right.\]
Với \(t = 1 \Rightarrow \frac{{5\sin x - 1}}{2} = 1 \Leftrightarrow \sin x = \frac{3}{5} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = {\alpha _1} \in \left( {0\,;\,2\pi } \right)}\\{x = {\alpha _2} \in \left( {0\,;\,2\pi } \right)}\end{array}} \right.\).
Với \(t = \frac{1}{3}\, \Rightarrow \frac{{5\sin x - 1}}{2} = \frac{1}{3} \Leftrightarrow \sin x = \,\frac{1}{3} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = {\alpha _3} \in \left( {0\,;\,2\pi } \right)}\\{x = {\alpha _4} \in \left( {0\,;\,2\pi } \right)}\end{array}} \right.\).
Với \(t = - 1 \Rightarrow \frac{{5\sin x - 1}}{2} = - 1 \Leftrightarrow \sin x = - \frac{1}{5} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = {\alpha _5} \in \left( {0\,;\,2\pi } \right)}\\{x = {\alpha _6} \in \left( {0\,;\,2\pi } \right)}\end{array}} \right.\).
Với \(t = - 3 \Rightarrow \frac{{5\sin x - 1}}{2} = - 3 \Leftrightarrow \sin x = - 1 \Leftrightarrow x = \frac{{3\pi }}{2} \in \left( {0\,;\,2\pi } \right)\).
\(\cos x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{2} \in \left( {0\,;\,2\pi } \right)}\\{x = \frac{{3\pi }}{2} \in \left( {0\,;\,2\pi } \right)}\end{array}} \right.\).
Vì \[x = \frac{{3\pi }}{2}\]là nghiệm kép nên không là điểm cực trị của hàm số \(y = g\left( x \right)\).
Vậy hàm số \(y = g\left( x \right)\)có \[7\]điểm cực trị trên khoảng \(\left( {0\,;\,2\pi } \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho hàm số \[y = \frac{{ax + b}}{{cx + d}}\] có đồ thị như hình vẽ.
Khẳng định nào sau đây đúng?
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
về câu hỏi!