Câu hỏi:
20/02/2023 164
Cho hàm số \(y = f\left( x \right)\), hàm số \(y = f'\left( x \right)\)có đồ thị như hình vẽ. Hàm số \(g\left( x \right) = 2f\left( {\frac{{5\sin x - 1}}{2}} \right) + \frac{{{{\left( {5\sin x - 1} \right)}^2}}}{4} + 3\)có bao nhiêu điểm cực trị trên khoảng \(\left( {0\,;\,2\pi } \right)\)?

Câu hỏi trong đề: Bộ 20 đề thi giữa kì 1 Toán 12 năm 2022-2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
Chọn B
Ta có \(g\left( x \right) = 2f\left( {\frac{{5\sin x - 1}}{2}} \right) + {\left( {\frac{{5\sin x - 1}}{2}} \right)^2} + 3\)
\[g'\left( x \right) = \frac{{5\cos x}}{2}\left[ {2f'\left( {\frac{{5\sin x - 1}}{2}} \right) + 2.\left( {\frac{{5\sin x - 1}}{2}} \right)} \right] = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos x = 0}\\{2f'\left( {\frac{{5\sin x - 1}}{2}} \right) + 2.\left( {\frac{{5\sin x - 1}}{2}} \right) = 0}\end{array}} \right.\]
Đặt \[t = \frac{{5\sin x - 1}}{2}\]vì \(x \in \left( {0\,;\,2\pi } \right) \Rightarrow t \in \left[ { - 3;2} \right]\)
Khi đó: \[2f'\left( {\frac{{5\sin x - 1}}{2}} \right) + 2.\left( {\frac{{5\sin x - 1}}{2}} \right) = 0\]thành \[f'\left( t \right) = - t \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{t = 1}\\{t = \frac{1}{3}\,}\end{array}}\\{\begin{array}{*{20}{c}}{t = - 1}\\{t = - 3}\end{array}}\end{array}} \right.\]
Với \(t = 1 \Rightarrow \frac{{5\sin x - 1}}{2} = 1 \Leftrightarrow \sin x = \frac{3}{5} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = {\alpha _1} \in \left( {0\,;\,2\pi } \right)}\\{x = {\alpha _2} \in \left( {0\,;\,2\pi } \right)}\end{array}} \right.\).
Với \(t = \frac{1}{3}\, \Rightarrow \frac{{5\sin x - 1}}{2} = \frac{1}{3} \Leftrightarrow \sin x = \,\frac{1}{3} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = {\alpha _3} \in \left( {0\,;\,2\pi } \right)}\\{x = {\alpha _4} \in \left( {0\,;\,2\pi } \right)}\end{array}} \right.\).
Với \(t = - 1 \Rightarrow \frac{{5\sin x - 1}}{2} = - 1 \Leftrightarrow \sin x = - \frac{1}{5} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = {\alpha _5} \in \left( {0\,;\,2\pi } \right)}\\{x = {\alpha _6} \in \left( {0\,;\,2\pi } \right)}\end{array}} \right.\).
Với \(t = - 3 \Rightarrow \frac{{5\sin x - 1}}{2} = - 3 \Leftrightarrow \sin x = - 1 \Leftrightarrow x = \frac{{3\pi }}{2} \in \left( {0\,;\,2\pi } \right)\).
\(\cos x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{2} \in \left( {0\,;\,2\pi } \right)}\\{x = \frac{{3\pi }}{2} \in \left( {0\,;\,2\pi } \right)}\end{array}} \right.\).
Vì \[x = \frac{{3\pi }}{2}\]là nghiệm kép nên không là điểm cực trị của hàm số \(y = g\left( x \right)\).
Vậy hàm số \(y = g\left( x \right)\)có \[7\]điểm cực trị trên khoảng \(\left( {0\,;\,2\pi } \right)\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Chọn D
Ta có \[f'\left( x \right) = {\left( {x + 1} \right)^2}{\left( {x - 1} \right)^3}\left( {2 - x} \right) \Rightarrow f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 1\\x = 2\end{array} \right.\].
Từ đó, ta có bảng biến thiên như sau:
Dựa vào bảng biến thiên thì hàm số \[y = f\left( x \right)\] đồng biến trên \(\left( {1\,;\,2} \right)\).
Lời giải
Lời giải
Chọn D
Đồ thị hàm số \[y = \frac{{ax + b}}{{cx + d}}\] đi qua \(M\left( {0\,;\,\frac{b}{d}} \right)\), có đường tiệm cận đứng \(x = - \frac{d}{c}\), đường tiệm cận ngang \(y = \frac{a}{c}\).
Quan sát đồ thị thấy:
+ Giao điểm với trục tung nằm phía dưới \(Ox\)nên \(\frac{b}{d} < 0 \Leftrightarrow bd < 0\)\( \Rightarrow \) Loại phương án
+ Đường tiệm cận ngang nằm phía trên \(Ox\)nên \(\frac{a}{c} > 0 \Leftrightarrow ac > 0\)\( \Rightarrow \) Loại phương án
+ Đường tiệm cận đứng nằm bên trái \(Oy\)nên \( - \frac{d}{c} < 0 \Leftrightarrow cd > 0\).
Ta có: \(\left\{ \begin{array}{l}bd < 0\\cd > 0\end{array} \right. \Rightarrow bc < 0\)\( \Rightarrow \) Loại phương án
Kiểm chứng phương án D: \(\left\{ \begin{array}{l}ac > 0\\cd > 0\end{array} \right. \Rightarrow ad > 0\); \(\left\{ \begin{array}{l}ad > 0\\bd < 0\end{array} \right. \Rightarrow ab < 0\).
Lưu ý: Có thể sử dụng giao điểm của đồ thị với trục hoành nằm bên phải \(Oy\)nên \( - \frac{b}{a} > 0 \Leftrightarrow ab < 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.