Câu hỏi:

20/02/2023 164

Cho hàm số \(y = f\left( x \right)\), hàm số \(y = f'\left( x \right)\)có đồ thị như hình vẽ. Hàm số \(g\left( x \right) = 2f\left( {\frac{{5\sin x - 1}}{2}} \right) + \frac{{{{\left( {5\sin x - 1} \right)}^2}}}{4} + 3\)có bao nhiêu điểm cực trị trên khoảng \(\left( {0\,;\,2\pi } \right)\)?
Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn B

Media VietJack

Ta có \(g\left( x \right) = 2f\left( {\frac{{5\sin x - 1}}{2}} \right) + {\left( {\frac{{5\sin x - 1}}{2}} \right)^2} + 3\)

\[g'\left( x \right) = \frac{{5\cos x}}{2}\left[ {2f'\left( {\frac{{5\sin x - 1}}{2}} \right) + 2.\left( {\frac{{5\sin x - 1}}{2}} \right)} \right] = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos x = 0}\\{2f'\left( {\frac{{5\sin x - 1}}{2}} \right) + 2.\left( {\frac{{5\sin x - 1}}{2}} \right) = 0}\end{array}} \right.\]

Đặt \[t = \frac{{5\sin x - 1}}{2}\]vì \(x \in \left( {0\,;\,2\pi } \right) \Rightarrow t \in \left[ { - 3;2} \right]\)

Khi đó: \[2f'\left( {\frac{{5\sin x - 1}}{2}} \right) + 2.\left( {\frac{{5\sin x - 1}}{2}} \right) = 0\]thành \[f'\left( t \right) = - t \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{t = 1}\\{t = \frac{1}{3}\,}\end{array}}\\{\begin{array}{*{20}{c}}{t = - 1}\\{t = - 3}\end{array}}\end{array}} \right.\]

Với \(t = 1 \Rightarrow \frac{{5\sin x - 1}}{2} = 1 \Leftrightarrow \sin x = \frac{3}{5} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = {\alpha _1} \in \left( {0\,;\,2\pi } \right)}\\{x = {\alpha _2} \in \left( {0\,;\,2\pi } \right)}\end{array}} \right.\).

Với \(t = \frac{1}{3}\, \Rightarrow \frac{{5\sin x - 1}}{2} = \frac{1}{3} \Leftrightarrow \sin x = \,\frac{1}{3} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = {\alpha _3} \in \left( {0\,;\,2\pi } \right)}\\{x = {\alpha _4} \in \left( {0\,;\,2\pi } \right)}\end{array}} \right.\).

Với \(t = - 1 \Rightarrow \frac{{5\sin x - 1}}{2} = - 1 \Leftrightarrow \sin x = - \frac{1}{5} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = {\alpha _5} \in \left( {0\,;\,2\pi } \right)}\\{x = {\alpha _6} \in \left( {0\,;\,2\pi } \right)}\end{array}} \right.\).

Với \(t = - 3 \Rightarrow \frac{{5\sin x - 1}}{2} = - 3 \Leftrightarrow \sin x = - 1 \Leftrightarrow x = \frac{{3\pi }}{2} \in \left( {0\,;\,2\pi } \right)\).

\(\cos x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{2} \in \left( {0\,;\,2\pi } \right)}\\{x = \frac{{3\pi }}{2} \in \left( {0\,;\,2\pi } \right)}\end{array}} \right.\).

Vì \[x = \frac{{3\pi }}{2}\]là nghiệm kép nên không là điểm cực trị của hàm số \(y = g\left( x \right)\).

Vậy hàm số \(y = g\left( x \right)\)có \[7\]điểm cực trị trên khoảng \(\left( {0\,;\,2\pi } \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Chọn D

Ta có \[f'\left( x \right) = {\left( {x + 1} \right)^2}{\left( {x - 1} \right)^3}\left( {2 - x} \right) \Rightarrow f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 1\\x = 2\end{array} \right.\].

Từ đó, ta có bảng biến thiên như sau:

Media VietJack

Dựa vào bảng biến thiên thì hàm số \[y = f\left( x \right)\] đồng biến trên \(\left( {1\,;\,2} \right)\).

Câu 2

Lời giải

Lời giải

Chọn D

Đồ thị hàm số \[y = \frac{{ax + b}}{{cx + d}}\] đi qua \(M\left( {0\,;\,\frac{b}{d}} \right)\), có đường tiệm cận đứng \(x = - \frac{d}{c}\), đường tiệm cận ngang \(y = \frac{a}{c}\).

Quan sát đồ thị thấy:

+ Giao điểm với trục tung nằm phía dưới \(Ox\)nên \(\frac{b}{d} < 0 \Leftrightarrow bd < 0\)\( \Rightarrow \) Loại phương án

+ Đường tiệm cận ngang nằm phía trên \(Ox\)nên \(\frac{a}{c} > 0 \Leftrightarrow ac > 0\)\( \Rightarrow \) Loại phương án

+ Đường tiệm cận đứng nằm bên trái \(Oy\)nên \( - \frac{d}{c} < 0 \Leftrightarrow cd > 0\).

Ta có: \(\left\{ \begin{array}{l}bd < 0\\cd > 0\end{array} \right. \Rightarrow bc < 0\)\( \Rightarrow \) Loại phương án

Kiểm chứng phương án D: \(\left\{ \begin{array}{l}ac > 0\\cd > 0\end{array} \right. \Rightarrow ad > 0\); \(\left\{ \begin{array}{l}ad > 0\\bd < 0\end{array} \right. \Rightarrow ab < 0\).

Lưu ý: Có thể sử dụng giao điểm của đồ thị với trục hoành nằm bên phải \(Oy\)nên \( - \frac{b}{a} > 0 \Leftrightarrow ab < 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP