Câu hỏi:

20/02/2023 122

Cho hàm số \(f\left( x \right) = {x^4} - 2{x^3} + m\) (\(m\) là tham số thực). Tìm tổng tất cả các giá trị của \(m\) sao cho \(\mathop {max}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| + 2\mathop {min}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = 10\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn C

Ta xét \(f\left( x \right) = {x^4} - 2{x^3} + m\) liên tục trên đoạn \(\left[ {0;1} \right]\), \(f'\left( x \right) = 4{x^3} - 6{x^2}\).

\(f'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0 \in \left[ {0;1} \right]}\\{x = \frac{3}{2} \notin \left[ {0;1} \right]}\end{array}} \right.\).

\(f\left( 0 \right) = m;f\left( 1 \right) = m - 1\).

Ta xét các trường hợp sau:

-Nếu \(m \le 0\) thì \(\mathop {max}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = 1 - m;\mathop {min}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = - m\).

Khi đó: \(\mathop {max}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| + 2\mathop {min}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = 10 \Leftrightarrow \left( {1 - m} \right) + 2\left( { - m} \right) = 10 \Leftrightarrow m = - 3\) (thỏa điều kiện).

-Nếu \(m \ge 1\) thì \(\mathop {max}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = m;\mathop {min}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = m - 1\).

Khi đó: \(\mathop {max}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| + 2\mathop {min}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = 10 \Leftrightarrow m + 2\left( {m - 1} \right) = 10 \Leftrightarrow m = 4\) (thỏa điều kiện).

-Nếu \(\frac{1}{2} \le m < 1\) thì \(\mathop {max}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = m;\mathop {min}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = 0\).

Khi đó: \(\mathop {max}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| + 2\mathop {min}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = 10 \Leftrightarrow m = 10\) (không thỏa điều kiện).

-Nếu \(0 < m < \frac{1}{2}\) thì \(\mathop {max}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = 1 - m;\mathop {min}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = 0\).

Khi đó: \(\mathop {max}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| + 2\mathop {min}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = 10 \Leftrightarrow 1 - m = 10 \Leftrightarrow m = - 9\) (không thỏa điều kiện).

Do đó có hai giá trị \(m = - 3\) và \(m = 4\) thỏa mãn yêu cầu bài toán.

Vậy tổng tất cả các giá trị của \(m\) sao cho \(\mathop {max}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| + 2\mathop {min}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = 10\) là \(1\).

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Chọn D

Ta có \[f'\left( x \right) = {\left( {x + 1} \right)^2}{\left( {x - 1} \right)^3}\left( {2 - x} \right) \Rightarrow f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 1\\x = 2\end{array} \right.\].

Từ đó, ta có bảng biến thiên như sau:

Media VietJack

Dựa vào bảng biến thiên thì hàm số \[y = f\left( x \right)\] đồng biến trên \(\left( {1\,;\,2} \right)\).

Câu 2

Lời giải

Lời giải

Chọn D

Đồ thị hàm số \[y = \frac{{ax + b}}{{cx + d}}\] đi qua \(M\left( {0\,;\,\frac{b}{d}} \right)\), có đường tiệm cận đứng \(x = - \frac{d}{c}\), đường tiệm cận ngang \(y = \frac{a}{c}\).

Quan sát đồ thị thấy:

+ Giao điểm với trục tung nằm phía dưới \(Ox\)nên \(\frac{b}{d} < 0 \Leftrightarrow bd < 0\)\( \Rightarrow \) Loại phương án

+ Đường tiệm cận ngang nằm phía trên \(Ox\)nên \(\frac{a}{c} > 0 \Leftrightarrow ac > 0\)\( \Rightarrow \) Loại phương án

+ Đường tiệm cận đứng nằm bên trái \(Oy\)nên \( - \frac{d}{c} < 0 \Leftrightarrow cd > 0\).

Ta có: \(\left\{ \begin{array}{l}bd < 0\\cd > 0\end{array} \right. \Rightarrow bc < 0\)\( \Rightarrow \) Loại phương án

Kiểm chứng phương án D: \(\left\{ \begin{array}{l}ac > 0\\cd > 0\end{array} \right. \Rightarrow ad > 0\); \(\left\{ \begin{array}{l}ad > 0\\bd < 0\end{array} \right. \Rightarrow ab < 0\).

Lưu ý: Có thể sử dụng giao điểm của đồ thị với trục hoành nằm bên phải \(Oy\)nên \( - \frac{b}{a} > 0 \Leftrightarrow ab < 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP