Câu hỏi:

21/02/2023 383

Tìm tất cả các giá trị \(m\) để hàm số \(y = \frac{m}{3}{x^3} - m{x^2} + \left( {2m - 1} \right)x - 2\) nghịch biến trên tập xác định của nó.

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn A

Tập xác định \(D = \mathbb{R}\)

Trường hợp \(1\): \(m = 0\)

Hàm số trở thành \(y = - x + 2\) nghịch biến trên \(\mathbb{R}\)\( \Rightarrow m = 0\) thỏa mãn.

Trường hợp \(2\): \(m \ne 0\)

\(y' = m{x^2} - 2mx + 2m - 1\)

Hàm số nghịch biến trên tập xác định \[ \Leftrightarrow y' \le 0,\forall x \in \mathbb{R}\].

(Dấu \(' = '\) xảy ra tại hữu hạn điểm trên \(\mathbb{R}\))

ĐK: \[\left\{ \begin{array}{l}m < 0\\\Delta ' \le 0\end{array} \right.\] \[ \Leftrightarrow \left\{ \begin{array}{l}m < 0\\{m^2} - m\left( {2m - 1} \right) \le 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}m < 0\\ - {m^2} + m \le 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}m < 0\\\left[ \begin{array}{l}m \ge 1\\m \le 0\end{array} \right.\end{array} \right. \Leftrightarrow m < 0\].

Kết hợp cả \(2\) trường hợp ta được \(m \le 0\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có đạo hàm cấp một xác định bởi công thức \(f'\left( x \right) = - {x^2} - 1\). Mệnh đề nào sau đây đúng?

Xem đáp án » 21/02/2023 9,445

Câu 2:

Cho hàm số \(y = {x^3} - 3x + 1 - m\) với \(m\) là tham số. Hàm số có giá trị cực đại và giá trị cực tiểu trái dấu khi

Xem đáp án » 21/02/2023 7,432

Câu 3:

Tổng số các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y = \frac{{\sqrt {x - 4} }}{{x - 1}}\)

Xem đáp án » 21/02/2023 6,837

Câu 4:

Khẳng định nào sau đây là sai?

Xem đáp án » 21/02/2023 5,196

Câu 5:

Cho hàm số \(y = f\left( x \right)\) bảng biến thiên như hình bên dưới

Media VietJack

Đồ thị hàm số \(g\left( x \right) = \frac{1}{{2f\left( {x + 3} \right) + 1}}\) có bao nhiêu tiệm cận đứng?

Xem đáp án » 21/02/2023 3,503

Câu 6:

Tìm \(a\) để giá trị lớn nhất của hàm số \(y = {x^3} - 3a{x^2} + a - 1\) trên đoạn \(\left[ { - 1;a} \right]\) bằng 10, biết \(a > 0\).

Xem đáp án » 21/02/2023 3,196

Câu 7:

Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị như hình vẽ bên dưới. Phương trình \(2f\left( x \right) + 5 = 0\) có số nghiệm là
Media VietJack

Xem đáp án » 21/02/2023 2,320

Bình luận


Bình luận