Câu hỏi:
21/02/2023 457
Tìm tất cả các giá trị \(m\) để hàm số \(y = \frac{m}{3}{x^3} - m{x^2} + \left( {2m - 1} \right)x - 2\) nghịch biến trên tập xác định của nó.
Câu hỏi trong đề: Bộ 20 đề thi giữa kì 1 Toán 12 năm 2022-2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
Chọn A
Tập xác định \(D = \mathbb{R}\)
Trường hợp \(1\): \(m = 0\)
Hàm số trở thành \(y = - x + 2\) nghịch biến trên \(\mathbb{R}\)\( \Rightarrow m = 0\) thỏa mãn.
Trường hợp \(2\): \(m \ne 0\)
\(y' = m{x^2} - 2mx + 2m - 1\)
Hàm số nghịch biến trên tập xác định \[ \Leftrightarrow y' \le 0,\forall x \in \mathbb{R}\].
(Dấu \(' = '\) xảy ra tại hữu hạn điểm trên \(\mathbb{R}\))
ĐK: \[\left\{ \begin{array}{l}m < 0\\\Delta ' \le 0\end{array} \right.\] \[ \Leftrightarrow \left\{ \begin{array}{l}m < 0\\{m^2} - m\left( {2m - 1} \right) \le 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}m < 0\\ - {m^2} + m \le 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}m < 0\\\left[ \begin{array}{l}m \ge 1\\m \le 0\end{array} \right.\end{array} \right. \Leftrightarrow m < 0\].
Kết hợp cả \(2\) trường hợp ta được \(m \le 0\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Chọn D
Vì \(f'\left( x \right) = - {x^2} - 1 < 0\), \(\forall x \in \mathbb{R}\) nên hàm số nghịch biến trên \(\mathbb{R}\).
Vì thế:
Do \(1 < 2\) nên \(f\left( 1 \right) > f\left( 2 \right)\). Suy ra A sai.
Do \(3 > 2\) nên \(f\left( 3 \right) < f\left( 2 \right)\). Suy ra B sai.
Do \(1 > 0\) nên \(f\left( 1 \right) < f\left( 0 \right)\). Suy ra C sai.
Do \(0 > - 1\) nên \(f\left( 0 \right) < f\left( { - 1} \right)\). Suy ra D đúng.
Lời giải
Lời giải
Chọn B
Hàm số \(y = {x^3} - 3x + 1 - m \Rightarrow y' = 3{x^2} - 3\), \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 1\end{array} \right.\).
Với \(x = 1 \Rightarrow y = - 1 - m\), với \(x = - 1 \Rightarrow y = 3 - m\)
Để hàm số có giá trị cực đại và giá trị cực tiểu trái dấu nhau khi và chỉ khi \(\left( { - 1 - m} \right)\left( {3 - m} \right) < 0 \Leftrightarrow - 1 < m < 3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.