Câu hỏi:

21/02/2023 376

Có tất cả bao nhiêu giá trị khác nhau của tham số \[m\]để đồ thị hàm số \[y = \,\frac{{x - 1}}{{{x^2} + mx + 4}}\]có hai đường tiệm cận?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn D

Ta có \[\mathop {\lim }\limits_{x \to \pm \infty } y = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{\frac{1}{x} - \frac{1}{{{x^2}}}}}{{1 + \frac{m}{x} + \frac{4}{{{x^2}}}}} = 0\].

Nên đồ thị hàm số luôn có một đường tiệm cận ngang là \[y = 0\].

Do đó để đồ thị hàm số có hai đường tiệm cận thì phương trình: \[{x^2} + mx + 4 = 0\] có nghiệm kép hoặc có hai nghiệm phân biệt trong đó có 1 nghiệm bằng 1.

Khi đó \[\left[ \begin{array}{l}\left\{ \begin{array}{l}{m^2} - 16 = 0\\m \ne - 5\end{array} \right.\\\left\{ \begin{array}{l}{m^2} - 16 > 0\\m = - 5\end{array} \right.\end{array} \right.\]\[ \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}{m^2} - 16 = 0\\m \ne - 5\end{array} \right.\\\left\{ \begin{array}{l}{m^2} - 16 > 0\\m = - 5\end{array} \right.\end{array} \right.\]\[ \Leftrightarrow \left[ \begin{array}{l}m = 4\\m = - 4\\m = - 5\end{array} \right.\].

Vậy \[m \in \left\{ { - 4\,;\,4\,;\, - 5} \right\}\]. Nên có \[3\] giá trị thỏa yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có đạo hàm cấp một xác định bởi công thức \(f'\left( x \right) = - {x^2} - 1\). Mệnh đề nào sau đây đúng?

Xem đáp án » 21/02/2023 9,021

Câu 2:

Cho hàm số \(y = {x^3} - 3x + 1 - m\) với \(m\) là tham số. Hàm số có giá trị cực đại và giá trị cực tiểu trái dấu khi

Xem đáp án » 21/02/2023 7,100

Câu 3:

Tổng số các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y = \frac{{\sqrt {x - 4} }}{{x - 1}}\)

Xem đáp án » 21/02/2023 6,513

Câu 4:

Khẳng định nào sau đây là sai?

Xem đáp án » 21/02/2023 5,125

Câu 5:

Cho hàm số \(y = f\left( x \right)\) bảng biến thiên như hình bên dưới

Media VietJack

Đồ thị hàm số \(g\left( x \right) = \frac{1}{{2f\left( {x + 3} \right) + 1}}\) có bao nhiêu tiệm cận đứng?

Xem đáp án » 21/02/2023 3,201

Câu 6:

Tìm \(a\) để giá trị lớn nhất của hàm số \(y = {x^3} - 3a{x^2} + a - 1\) trên đoạn \(\left[ { - 1;a} \right]\) bằng 10, biết \(a > 0\).

Xem đáp án » 21/02/2023 3,016

Câu 7:

Cho hàm số \(y = f(x)\) có bảng biến thiên như hình sau:

Media VietJack

Số đường tiệm cận ngang của đồ thị hàm số đã cho là

Xem đáp án » 21/02/2023 2,105

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL