Câu hỏi:

21/02/2023 777

Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đạo hàm là hàm số \(y = f'\left( x \right)\) với đồ thị như hình vẽ bên.

 Media VietJack

Biết rằng đồ thị hàm số \(y = f\left( x \right)\) tiếp xúc với trục hoành tại điểm có hoành độ âm. Khi đó đồ thị hàm số cắt trục tung tại điểm có tung độ là bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn A

Ta có \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d \Rightarrow f'\left( x \right) = 3a{x^2} + 2bx + c\)

Đồ thị hàm số \(y = f'\left( x \right)\) đi qua các điểm \(A\left( { - 2;0} \right)\), \(O\left( {0;0} \right)\)\(C\left( { - 1; - 3} \right)\) nên ta có

\(\left\{ {\begin{array}{*{20}{c}}{12a - 4b + c = 0}\\{c = 0}\\{3a - 2b + c = - 3}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 1}\\{b = 3}\\{c = 0}\end{array}} \right. \Rightarrow y = f\left( x \right) = {x^3} + 3{x^2} + d\)\(f'\left( x \right) = 3{x^2} + 6x\).

Gọi tiếp điểm của đồ thị hàm số \(y = f\left( x \right)\) và trục hoành là \(M\left( {{x_0};0} \right)\) với \({x_0} < 0.\)

Tiếp tuyến có hệ số góc

\(k = 0 \Rightarrow y'\left( {{x_0}} \right) = 0 \Leftrightarrow 3{x_0}^2 + 6{x_0} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{{x_0} = 0}\\{{x_0} = - 2}\end{array}} \right.\). Vì \({x_0} < 0 \Rightarrow {x_0} = - 2\).

\(M\left( { - 2;0} \right)\) thuộc đồ thị hàm số \(y = f\left( x \right) \Rightarrow - 8 + 12 + d = 0 \Rightarrow d = - 4.\)

Khi đó \(y = f\left( x \right) = {x^3} + 3{x^2} - 4.\) Đồ thị hàm số cắt trục tung tại điểm có tung độ là \( - 4\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Lời giải

Chọn D

\(f'\left( x \right) = - {x^2} - 1 < 0\), \(\forall x \in \mathbb{R}\) nên hàm số nghịch biến trên \(\mathbb{R}\).

Vì thế:

Do \(1 < 2\) nên \(f\left( 1 \right) > f\left( 2 \right)\). Suy ra A sai.

Do \(3 > 2\) nên \(f\left( 3 \right) < f\left( 2 \right)\). Suy ra B sai.

Do \(1 > 0\) nên \(f\left( 1 \right) < f\left( 0 \right)\). Suy ra C sai.

Do \(0 > - 1\) nên \(f\left( 0 \right) < f\left( { - 1} \right)\). Suy ra D đúng.

Câu 2

Lời giải

Lời giải

Chọn B

Hàm số \(y = {x^3} - 3x + 1 - m \Rightarrow y' = 3{x^2} - 3\), \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 1\end{array} \right.\).

Với \(x = 1 \Rightarrow y = - 1 - m\), với \(x = - 1 \Rightarrow y = 3 - m\)

Để hàm số có giá trị cực đại và giá trị cực tiểu trái dấu nhau khi và chỉ khi \(\left( { - 1 - m} \right)\left( {3 - m} \right) < 0 \Leftrightarrow - 1 < m < 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP