Câu hỏi:
21/02/2023 309Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đạo hàm là hàm số \(y = f'\left( x \right)\) với đồ thị như hình vẽ bên.
Biết rằng đồ thị hàm số \(y = f\left( x \right)\) tiếp xúc với trục hoành tại điểm có hoành độ âm. Khi đó đồ thị hàm số cắt trục tung tại điểm có tung độ là bao nhiêu?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Chọn A
Ta có \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d \Rightarrow f'\left( x \right) = 3a{x^2} + 2bx + c\)
Đồ thị hàm số \(y = f'\left( x \right)\) đi qua các điểm \(A\left( { - 2;0} \right)\), \(O\left( {0;0} \right)\) và \(C\left( { - 1; - 3} \right)\) nên ta có
\(\left\{ {\begin{array}{*{20}{c}}{12a - 4b + c = 0}\\{c = 0}\\{3a - 2b + c = - 3}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 1}\\{b = 3}\\{c = 0}\end{array}} \right. \Rightarrow y = f\left( x \right) = {x^3} + 3{x^2} + d\) và \(f'\left( x \right) = 3{x^2} + 6x\).
Gọi tiếp điểm của đồ thị hàm số \(y = f\left( x \right)\) và trục hoành là \(M\left( {{x_0};0} \right)\) với \({x_0} < 0.\)
Tiếp tuyến có hệ số góc
\(k = 0 \Rightarrow y'\left( {{x_0}} \right) = 0 \Leftrightarrow 3{x_0}^2 + 6{x_0} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{{x_0} = 0}\\{{x_0} = - 2}\end{array}} \right.\). Vì \({x_0} < 0 \Rightarrow {x_0} = - 2\).
\(M\left( { - 2;0} \right)\) thuộc đồ thị hàm số \(y = f\left( x \right) \Rightarrow - 8 + 12 + d = 0 \Rightarrow d = - 4.\)
Khi đó \(y = f\left( x \right) = {x^3} + 3{x^2} - 4.\) Đồ thị hàm số cắt trục tung tại điểm có tung độ là \( - 4\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 5:
Cho hàm số \(y = f\left( x \right)\) bảng biến thiên như hình bên dưới
Đồ thị hàm số \(g\left( x \right) = \frac{1}{{2f\left( {x + 3} \right) + 1}}\) có bao nhiêu tiệm cận đứng?
Câu 6:
Câu 7:
Cho hàm số \(y = f(x)\) có bảng biến thiên như hình sau:
Số đường tiệm cận ngang của đồ thị hàm số đã cho là
về câu hỏi!