Câu hỏi:

21/02/2023 407

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh có độ dài bằng \(a\). Cạnh bên \(SA\) vuông góc với mặt đáy \(\left( {ABC} \right)\) và \(SA = a\sqrt 3 \).Thể tích của khối chóp \(S.ABC\) là

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn D

Chiều cao của khối chóp \(S.ABC\) là: \(h = SA = a\sqrt 3 \).

Tam giác \(ABC\) đều cạnh \(a\) nên diện tích đáy của khối chóp là: \(B = {S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}\).

Thể tích của khối chóp \(S.ABC\) là: \(V = \frac{1}{3}B.h = \frac{1}{3}.\frac{{{a^2}\sqrt 3 }}{4}.a\sqrt 3 = \frac{{{a^3}}}{4}\).

Vậy \(V = \frac{{{a^3}}}{4}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có đạo hàm cấp một xác định bởi công thức \(f'\left( x \right) = - {x^2} - 1\). Mệnh đề nào sau đây đúng?

Xem đáp án » 21/02/2023 9,444

Câu 2:

Cho hàm số \(y = {x^3} - 3x + 1 - m\) với \(m\) là tham số. Hàm số có giá trị cực đại và giá trị cực tiểu trái dấu khi

Xem đáp án » 21/02/2023 7,431

Câu 3:

Tổng số các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y = \frac{{\sqrt {x - 4} }}{{x - 1}}\)

Xem đáp án » 21/02/2023 6,836

Câu 4:

Khẳng định nào sau đây là sai?

Xem đáp án » 21/02/2023 5,195

Câu 5:

Cho hàm số \(y = f\left( x \right)\) bảng biến thiên như hình bên dưới

Media VietJack

Đồ thị hàm số \(g\left( x \right) = \frac{1}{{2f\left( {x + 3} \right) + 1}}\) có bao nhiêu tiệm cận đứng?

Xem đáp án » 21/02/2023 3,503

Câu 6:

Tìm \(a\) để giá trị lớn nhất của hàm số \(y = {x^3} - 3a{x^2} + a - 1\) trên đoạn \(\left[ { - 1;a} \right]\) bằng 10, biết \(a > 0\).

Xem đáp án » 21/02/2023 3,196

Câu 7:

Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị như hình vẽ bên dưới. Phương trình \(2f\left( x \right) + 5 = 0\) có số nghiệm là
Media VietJack

Xem đáp án » 21/02/2023 2,319

Bình luận


Bình luận