Câu hỏi:
21/02/2023 1,457Cho hàm số \(y = f\left( x \right)\) thỏa mãn:
Hàm số \(y = f\left( {3 - x} \right) - x - \sqrt {{x^2} + 2} \) nghịch biến trên khoảng nào sau đây?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Chọn A
Ta có\(y' = - f'\left( {3 - x} \right) - 1 - \frac{x}{{\sqrt {{x^2} + 2} }} \Leftrightarrow y' = - \left( {f'\left( {3 - x} \right) + 1 + \frac{x}{{\sqrt {{x^2} + 2} }}} \right)\).
Ta thấy \(f'\left( {3 - x} \right) > 0 \Leftrightarrow \left[ \begin{array}{l} - 2 < 3 - x < 0\\3 - x > 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}3 < x < 5\\x < 0\end{array} \right.\);
Trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {3;5} \right)\) thì \(1 + \frac{x}{{\sqrt {{x^2} + 2} }}\) đều có giá trị dương.
Suy ra trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {3;5} \right)\) thì:\(f'\left( {3 - x} \right) + 1 + \frac{x}{{\sqrt {{x^2} + 2} }} > 0 \Rightarrow y' < 0\)
Vậy hàm số\(y = f\left( {3 - x} \right) - x - \sqrt {{x^2} + 2} \) nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {3;5} \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 5:
Cho hàm số \(y = f\left( x \right)\) bảng biến thiên như hình bên dưới
Đồ thị hàm số \(g\left( x \right) = \frac{1}{{2f\left( {x + 3} \right) + 1}}\) có bao nhiêu tiệm cận đứng?
Câu 6:
Câu 7:
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
về câu hỏi!