Câu hỏi:

21/02/2023 450

Cho hàm số \(y = f\left( x \right)\). Hàm số \(y = f'\left( x \right)\)có đồ thị như hình vẽ.

Media VietJack

Hàm số \(y = f\left( {{x^2} - 2} \right) - \left( {\frac{{{x^3}}}{3} + {x^2} - 3x + 4} \right)\)nghịch biến trong khoảng nào dưới đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn C

Chọn \(f'\left( x \right) = \left( {x - 1} \right){\left( {x - 2} \right)^2}\left( {x - 3} \right)\left( {x - 4} \right)\)

Đặt \(y = g\left( x \right) = f\left( {{x^2} - 2} \right) - \left( {\frac{{{x^3}}}{3} + {x^2} - 3x + 4} \right)\).

Khi đó \(g'\left( x \right) = 2x.f'\left( {{x^2} - 2} \right) - \left( {{x^2} + 2x - 3} \right)\).

\( = 2x.\left( {{x^2} - 2 - 1} \right){\left( {{x^2} - 2 - 2} \right)^2}\left( {{x^2} - 2 - 3} \right)\left( {{x^2} - 2 - 4} \right) - \left( {{x^2} + 2x - 3} \right)\)\( = 2x.\left( {{x^2} - 3} \right){\left( {{x^2} - 4} \right)^2}\left( {{x^2} - 5} \right)\left( {{x^2} - 6} \right) - \left( {{x^2} + 2x - 3} \right)\)

\(g'\left( { - 2} \right) = 3 > 0\)

\(\,g'\left( 3 \right) = 10788 > 0\)

Cách 2: (TV phản biện)

Ta có \(y' = g'\left( x \right) = 2x.f'\left( {{x^2} - 2} \right) - \left( {{x^2} + 2x - 3} \right)\)

Từ đồ thị ta có \(f'\left( {{x^2} - 2} \right) < 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{x^2} - 2 < 1}\\{3 < {x^2} - 2 < 4}\end{array}} \right.\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x \in \left( { - \sqrt 3 ;\sqrt 3 } \right)}\\{x \in \left( { - \sqrt 6 ; - \sqrt 5 } \right) \cup \left( {\sqrt 5 ;\sqrt 6 } \right)}\end{array}} \right.\).

Suy ra \(2xf'\left( {{x^2} - 2} \right) < 0 \Leftrightarrow x \in \left( { - \infty ; - \sqrt 6 } \right) \cup \left( { - \sqrt 5 ; - \sqrt 3 } \right) \cup \left( {0;\sqrt 3 } \right) \cup \left( {\sqrt 5 ;\sqrt 6 } \right)\)

Nên ta lập được bảng xét dấu của \(g'\left( x \right)\)như sau

Media VietJack

Từ bảng xét dấu ta thấy hàm số đã cho nghịch biến trên các khoảng \(\left( { - \infty ; - 3} \right)\), \(\left( {1;\sqrt 3 } \right)\)và \(\left( {\sqrt 5 ;\sqrt 6 } \right)\).

Vậy đáp án đúng là đáp án

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Lời giải

Chọn D

\(f'\left( x \right) = - {x^2} - 1 < 0\), \(\forall x \in \mathbb{R}\) nên hàm số nghịch biến trên \(\mathbb{R}\).

Vì thế:

Do \(1 < 2\) nên \(f\left( 1 \right) > f\left( 2 \right)\). Suy ra A sai.

Do \(3 > 2\) nên \(f\left( 3 \right) < f\left( 2 \right)\). Suy ra B sai.

Do \(1 > 0\) nên \(f\left( 1 \right) < f\left( 0 \right)\). Suy ra C sai.

Do \(0 > - 1\) nên \(f\left( 0 \right) < f\left( { - 1} \right)\). Suy ra D đúng.

Câu 2

Lời giải

Lời giải

Chọn B

Hàm số \(y = {x^3} - 3x + 1 - m \Rightarrow y' = 3{x^2} - 3\), \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 1\end{array} \right.\).

Với \(x = 1 \Rightarrow y = - 1 - m\), với \(x = - 1 \Rightarrow y = 3 - m\)

Để hàm số có giá trị cực đại và giá trị cực tiểu trái dấu nhau khi và chỉ khi \(\left( { - 1 - m} \right)\left( {3 - m} \right) < 0 \Leftrightarrow - 1 < m < 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP