Câu hỏi:

21/02/2023 870

Đặt \(S\)là tập hợp tất cả các số nguyên âm \(m\)thỏa thỏa mãn điều kiện hàm số \[y = \frac{{{m^3}x + 16}}{{x + m}}\]đồng biến trên khoảng \(\left( {5; + \infty } \right)\). Hỏi \(S\)có bao nhiêu phần tử?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn C

\(y' = \frac{{{m^4} - 16}}{{{{\left( {x + m} \right)}^2}}} = \frac{{\left( {{m^2} - 4} \right)\left( {{m^2} + 4} \right)}}{{{{\left( {x + m} \right)}^2}}},\forall x \ne - m\).

Yêu cầu bài toán \( \Leftrightarrow y' > 0;\forall x \in \left( {5; + \infty } \right) \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 4 > 0\\ - m \notin \left( {5; + \infty } \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > 2\\m < - 2\end{array} \right.\\m \ge - 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m > 2\\ - 5 \le m < - 2\end{array} \right.\).

Kết hợp với \(m \in {\mathbb{Z}^ - } \Rightarrow m \in \left\{ { - 5; - 4; - 3} \right\}\)là các giá trị cần tìm.

Vậy tập \(S\)\(3\)phần tử.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Lời giải

Chọn D

\(f'\left( x \right) = - {x^2} - 1 < 0\), \(\forall x \in \mathbb{R}\) nên hàm số nghịch biến trên \(\mathbb{R}\).

Vì thế:

Do \(1 < 2\) nên \(f\left( 1 \right) > f\left( 2 \right)\). Suy ra A sai.

Do \(3 > 2\) nên \(f\left( 3 \right) < f\left( 2 \right)\). Suy ra B sai.

Do \(1 > 0\) nên \(f\left( 1 \right) < f\left( 0 \right)\). Suy ra C sai.

Do \(0 > - 1\) nên \(f\left( 0 \right) < f\left( { - 1} \right)\). Suy ra D đúng.

Câu 2

Lời giải

Lời giải

Chọn B

Hàm số \(y = {x^3} - 3x + 1 - m \Rightarrow y' = 3{x^2} - 3\), \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 1\end{array} \right.\).

Với \(x = 1 \Rightarrow y = - 1 - m\), với \(x = - 1 \Rightarrow y = 3 - m\)

Để hàm số có giá trị cực đại và giá trị cực tiểu trái dấu nhau khi và chỉ khi \(\left( { - 1 - m} \right)\left( {3 - m} \right) < 0 \Leftrightarrow - 1 < m < 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP