Câu hỏi:

21/02/2023 138

Cho hình chóp \(S.ABC\), \(M\)\(N\) là các điểm thuộc các cạnh \(SA\)\(SB\) sao cho \(MA = 2SM\), \(SN = 2NB\), \(\left( \alpha \right)\) là mặt phẳng qua \(MN\) và song song với \(SC\). Mặt phẳng \(\left( \alpha \right)\) chia khối chóp \(S.ABC\) thành hai khối đa diện \(\left( {{H_1}} \right)\)\(\left( {{H_2}} \right)\) với \(\left( {{H_1}} \right)\) là khối đa diện chứa điểm \(S\), \(\left( {{H_2}} \right)\) là khối đa diện chứa điểm \(A\). Gọi \({V_1}\) \({V_2}\) lần lượt là thể tích của \(\left( {{H_1}} \right)\)\(\left( {{H_2}} \right)\). Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}\).

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn A

Media VietJack

Kí hiệu \(V\) là thể tích khối tứ diện \(SABC\).

Gọi \(P\), \(Q\) lần lượt là giao điểm của \(\left( \alpha \right)\) với các đường thẳng \(BC\), \(AC\).

Ta có \(NP\;{\rm{//}}\;MQ\;{\rm{//}}\;SC\).

Khi chia khối \(\left( {{H_1}} \right)\) bởi mặt phẳng \(\left( {QNC} \right)\), ta được hai khối chóp \(N.SMQC\)\(N.QPC\).

Ta có \(\frac{{{V_{N.SMQC}}}}{{{V_{B.ASC}}}} = \frac{{d\left( {N,\left( {SAC} \right)} \right)}}{{d\left( {B,\left( {SAC} \right)} \right)}} \cdot \frac{{{S_{SMQC}}}}{{{S_{SAC}}}}\).

\(\frac{{d\left( {N,\left( {SAC} \right)} \right)}}{{d\left( {B,\left( {SAC} \right)} \right)}} = \frac{{NS}}{{BS}} = \frac{2}{3}\); \(\frac{{{S_{AMQ}}}}{{{S_{ASC}}}} = \frac{{AM}}{{AS}}.\frac{{AQ}}{{AC}} = {\left( {\frac{{AM}}{{AS}}} \right)^2} = \frac{4}{9} \Rightarrow \frac{{{S_{SMQC}}}}{{{S_{ASC}}}} = \frac{5}{9}\).

Do đó \(\frac{{{V_{N.SMQC}}}}{{{V_{B.ASC}}}} = \frac{2}{3} \cdot \frac{5}{9} = \frac{{10}}{{27}}\).

\(\frac{{{V_{N.QPC}}}}{{{V_{S.ABC}}}} = \frac{{d\left( {N,\left( {QPC} \right)} \right)}}{{d\left( {S,\left( {ABC} \right)} \right)}} \cdot \frac{{{S_{QPC}}}}{{{S_{ABC}}}} = \frac{{NB}}{{SB}} \cdot \left( {\frac{{CQ}}{{CA}} \cdot \frac{{CP}}{{CB}}} \right) = \frac{1}{3} \cdot \left( {\frac{1}{3} \cdot \frac{2}{3}} \right) = \frac{2}{{27}}\).

Do đó \(\frac{{{V_1}}}{V} = \frac{{{V_{N.SMQC}}}}{{{V_{B.ASC}}}} + \frac{{{V_{N.QPC}}}}{{{V_{S.ABC}}}} = \frac{{10}}{{27}} + \frac{2}{{27}} = \frac{4}{9} \Rightarrow \frac{{{V_1}}}{{{V_1} + {V_2}}} = \frac{4}{9} \Rightarrow 5{V_1} = 4{V_2} \Rightarrow \frac{{{V_1}}}{{{V_2}}} = \frac{4}{5}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có đạo hàm cấp một xác định bởi công thức \(f'\left( x \right) = - {x^2} - 1\). Mệnh đề nào sau đây đúng?

Xem đáp án » 21/02/2023 9,445

Câu 2:

Cho hàm số \(y = {x^3} - 3x + 1 - m\) với \(m\) là tham số. Hàm số có giá trị cực đại và giá trị cực tiểu trái dấu khi

Xem đáp án » 21/02/2023 7,432

Câu 3:

Tổng số các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y = \frac{{\sqrt {x - 4} }}{{x - 1}}\)

Xem đáp án » 21/02/2023 6,837

Câu 4:

Khẳng định nào sau đây là sai?

Xem đáp án » 21/02/2023 5,196

Câu 5:

Cho hàm số \(y = f\left( x \right)\) bảng biến thiên như hình bên dưới

Media VietJack

Đồ thị hàm số \(g\left( x \right) = \frac{1}{{2f\left( {x + 3} \right) + 1}}\) có bao nhiêu tiệm cận đứng?

Xem đáp án » 21/02/2023 3,503

Câu 6:

Tìm \(a\) để giá trị lớn nhất của hàm số \(y = {x^3} - 3a{x^2} + a - 1\) trên đoạn \(\left[ { - 1;a} \right]\) bằng 10, biết \(a > 0\).

Xem đáp án » 21/02/2023 3,196

Câu 7:

Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị như hình vẽ bên dưới. Phương trình \(2f\left( x \right) + 5 = 0\) có số nghiệm là
Media VietJack

Xem đáp án » 21/02/2023 2,320

Bình luận


Bình luận