Câu hỏi:
21/02/2023 733
Cho hàm số \(f\left( x \right) = \left| {{x^4} - 4{x^3} + 4{x^2} + m} \right|\). Khi \(m\) thuộc \(\left[ { - 3;3} \right]\) thì giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {0;2} \right]\) đạt giá trị lớn nhất bằng
Câu hỏi trong đề: Bộ 20 đề thi giữa kì 1 Toán 12 năm 2022-2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
Chọn B
Tập xác định: \(D = \mathbb{R}\).
Xét \(u\left( x \right) = {x^4} - 4{x^3} + 4{x^2} + m\) liên tục trên \(\left[ {0;2} \right]\).
Ta có \(u'\left( x \right) = 4{x^3} - 12{x^2} + 8x\), \(u'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = 1}\\{x = 2}\end{array}} \right.\).
Ta có: \(\left\{ {\begin{array}{*{20}{c}}{u\left( 0 \right) = m}\\{u\left( 1 \right) = m + 1}\\{u\left( 2 \right) = m}\end{array}} \right.\).
Suy ra: \(\left\{ {\begin{array}{*{20}{c}}{\mathop {min}\limits_{\left[ {{\rm{0;2}}} \right]} u\left( x \right) = m}\\{\mathop {{\rm{max}}}\limits_{\left[ {{\rm{0;2}}} \right]} u\left( x \right) = m + 1}\end{array}} \right.\).
\(\mathop {min}\limits_{\left[ {0;2} \right]} f\left( x \right) = \min \left\{ {0;\left| m \right|;\left| {m + 1} \right|} \right\}\) hoặc \(\mathop {min}\limits_{\left[ {0;2} \right]} f\left( x \right) = 0\), với \(m \in \left[ { - 3;3} \right]\) (*).
Trường hợp 1: \(m\left( {m + 1} \right) \le 0 \Leftrightarrow - 1 \le m \le 0\).
\(\mathop {min}\limits_{\left[ {0;2} \right]} f\left( x \right) = 0\)
Trường hợp 2: \(m > 0\) kết hợp với (*) ta có: \(0 < m \le 3\).
\(\mathop {min}\limits_{\left[ {0;2} \right]} f\left( x \right) = \left| m \right|\).
Trường hợp 3: \(m + 1 < 0 \Leftrightarrow m < - 1\) kết hợp với (*) ta có \( - 3 \le m < - 1\).
\(\mathop {min}\limits_{\left[ {0;2} \right]} f\left( x \right) = \left| {m + 1} \right|\).
Khi đó: \(\mathop {min}\limits_{\left[ {{\rm{0;2}}} \right]} f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\left| m \right|,m \in 0;3}\\{\left| {m + 1} \right|,m \in \left. { - 3; - 1} \right)}\\{0,m \in \left[ { - 1;0} \right]}\end{array}} \right.\).
Dựa vào đồ thị ta thấy \(\mathop {min}\limits_{\left[ {{\rm{0;2}}} \right]} f\left( x \right)\) đạt giá trị lớn nhất bằng \(3\) khi \(m = 3\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Chọn D
Vì \(f'\left( x \right) = - {x^2} - 1 < 0\), \(\forall x \in \mathbb{R}\) nên hàm số nghịch biến trên \(\mathbb{R}\).
Vì thế:
Do \(1 < 2\) nên \(f\left( 1 \right) > f\left( 2 \right)\). Suy ra A sai.
Do \(3 > 2\) nên \(f\left( 3 \right) < f\left( 2 \right)\). Suy ra B sai.
Do \(1 > 0\) nên \(f\left( 1 \right) < f\left( 0 \right)\). Suy ra C sai.
Do \(0 > - 1\) nên \(f\left( 0 \right) < f\left( { - 1} \right)\). Suy ra D đúng.
Lời giải
Lời giải
Chọn B
Hàm số \(y = {x^3} - 3x + 1 - m \Rightarrow y' = 3{x^2} - 3\), \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 1\end{array} \right.\).
Với \(x = 1 \Rightarrow y = - 1 - m\), với \(x = - 1 \Rightarrow y = 3 - m\)
Để hàm số có giá trị cực đại và giá trị cực tiểu trái dấu nhau khi và chỉ khi \(\left( { - 1 - m} \right)\left( {3 - m} \right) < 0 \Leftrightarrow - 1 < m < 3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.