Câu hỏi:

21/02/2023 598

Cho hàm số \(f\left( x \right) = \left| {{x^4} - 4{x^3} + 4{x^2} + m} \right|\). Khi \(m\) thuộc \(\left[ { - 3;3} \right]\) thì giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {0;2} \right]\) đạt giá trị lớn nhất bằng

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn B

Tập xác định: \(D = \mathbb{R}\).

Xét \(u\left( x \right) = {x^4} - 4{x^3} + 4{x^2} + m\) liên tục trên \(\left[ {0;2} \right]\).

Ta có \(u'\left( x \right) = 4{x^3} - 12{x^2} + 8x\), \(u'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = 1}\\{x = 2}\end{array}} \right.\).

Ta có: \(\left\{ {\begin{array}{*{20}{c}}{u\left( 0 \right) = m}\\{u\left( 1 \right) = m + 1}\\{u\left( 2 \right) = m}\end{array}} \right.\).

Suy ra: \(\left\{ {\begin{array}{*{20}{c}}{\mathop {min}\limits_{\left[ {{\rm{0;2}}} \right]} u\left( x \right) = m}\\{\mathop {{\rm{max}}}\limits_{\left[ {{\rm{0;2}}} \right]} u\left( x \right) = m + 1}\end{array}} \right.\).

\(\mathop {min}\limits_{\left[ {0;2} \right]} f\left( x \right) = \min \left\{ {0;\left| m \right|;\left| {m + 1} \right|} \right\}\) hoặc \(\mathop {min}\limits_{\left[ {0;2} \right]} f\left( x \right) = 0\), với \(m \in \left[ { - 3;3} \right]\) (*).

Trường hợp 1: \(m\left( {m + 1} \right) \le 0 \Leftrightarrow - 1 \le m \le 0\).

      \(\mathop {min}\limits_{\left[ {0;2} \right]} f\left( x \right) = 0\)

Trường hợp 2: \(m > 0\) kết hợp với (*) ta có: \(0 < m \le 3\).

\(\mathop {min}\limits_{\left[ {0;2} \right]} f\left( x \right) = \left| m \right|\).

Trường hợp 3: \(m + 1 < 0 \Leftrightarrow m < - 1\) kết hợp với (*) ta có \( - 3 \le m < - 1\).

\(\mathop {min}\limits_{\left[ {0;2} \right]} f\left( x \right) = \left| {m + 1} \right|\).

Khi đó: \(\mathop {min}\limits_{\left[ {{\rm{0;2}}} \right]} f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\left| m \right|,m \in 0;3}\\{\left| {m + 1} \right|,m \in \left. { - 3; - 1} \right)}\\{0,m \in \left[ { - 1;0} \right]}\end{array}} \right.\).

Media VietJack

Dựa vào đồ thị ta thấy \(\mathop {min}\limits_{\left[ {{\rm{0;2}}} \right]} f\left( x \right)\) đạt giá trị lớn nhất bằng \(3\) khi \(m = 3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có đạo hàm cấp một xác định bởi công thức \(f'\left( x \right) = - {x^2} - 1\). Mệnh đề nào sau đây đúng?

Xem đáp án » 21/02/2023 9,444

Câu 2:

Cho hàm số \(y = {x^3} - 3x + 1 - m\) với \(m\) là tham số. Hàm số có giá trị cực đại và giá trị cực tiểu trái dấu khi

Xem đáp án » 21/02/2023 7,431

Câu 3:

Tổng số các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y = \frac{{\sqrt {x - 4} }}{{x - 1}}\)

Xem đáp án » 21/02/2023 6,836

Câu 4:

Khẳng định nào sau đây là sai?

Xem đáp án » 21/02/2023 5,196

Câu 5:

Cho hàm số \(y = f\left( x \right)\) bảng biến thiên như hình bên dưới

Media VietJack

Đồ thị hàm số \(g\left( x \right) = \frac{1}{{2f\left( {x + 3} \right) + 1}}\) có bao nhiêu tiệm cận đứng?

Xem đáp án » 21/02/2023 3,503

Câu 6:

Tìm \(a\) để giá trị lớn nhất của hàm số \(y = {x^3} - 3a{x^2} + a - 1\) trên đoạn \(\left[ { - 1;a} \right]\) bằng 10, biết \(a > 0\).

Xem đáp án » 21/02/2023 3,196

Câu 7:

Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị như hình vẽ bên dưới. Phương trình \(2f\left( x \right) + 5 = 0\) có số nghiệm là
Media VietJack

Xem đáp án » 21/02/2023 2,320

Bình luận


Bình luận