Câu hỏi:
23/02/2023 426Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và có đồ thị \(f'\left( x \right)\) như hình vẽ.
Hỏi hàm số \(y = f\left( x \right)\) có bao nhiêu điểm cực đại ?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Chọn C
Ta có: \(f'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 3}\\{x = 1}\\{x = 0}\\{x = - 2}\end{array}} \right.\).
Ta có bảng xét dấu đạo hàm \(f'\left( x \right)\)
Từ bảng xét dấu ta thấy \(f'\left( x \right)\) đổi dấu khi qua \(x = - 2\), \(x = 1\) và \(x = 3\) (hàm số \(f'\left( x \right)\) không đổi dấu khi qua \(x = 0\)).
Khi qua \(x = 1\), \(f'\left( x \right)\) đổi dấu từ dương sang âm nên hàm số có một điểm cực đại là \(x = 1\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
về câu hỏi!