Câu hỏi:

23/02/2023 318

Giá trị lớn nhất \[M\] của hàm số \[f\left( x \right) = 2{x^3} + 3{x^2} - 12x + 1\] trên \[\left[ { - 1;2} \right]\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn D

Hàm số \[y = f\left( x \right)\]xác định và liên tục trên \(\left[ { - 1;2} \right]\).

Ta có: \(f'\left( x \right) = 6{x^2} + 6x - 12 ; \,\,f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 2\end{array} \right.\)

Trên \(\left[ { - 1;2} \right]\): \(f\left( { - 1} \right) = 14,\,\,f\left( 1 \right) = - 6,\,\,f\left( 2 \right) = 5.\)

Suy ra \(M = \mathop {\max }\limits_{\left[ { - 1;2} \right]} f\left( x \right) = 14.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Chọn B

Ta có \(v = S' = - {t^2} + 8t + 9,t \in \left( {0;10} \right)\)

\(v' = - 2t + 8\). Xét \(v' = 0 \Rightarrow t = 4 \in \left( {0;10} \right)\)

Bảng biến thiên:

Media VietJack

Vậy vận tốc lớn nhất của chất điểm là \(25\left( {{\rm{m/s}}} \right)\) tại tại \(t = 4.\)

Câu 2

Lời giải

Lời giải

Chọn C

Ta loại ngay được hai hàm số ở các phương án A và B

Với hàm số ở

Ta có \(y' = - 3{x^2} - 6x\), \(y' = 0\) có hai nghiệm phân biệt \(x = 0\)\(x = - 2\) nên không thể đơn điệu trên \(\mathbb{R}\). Vậy đáp án là C

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP