Câu hỏi:

23/02/2023 2,035

Cho hàm số \(y = \frac{1}{3}\left( {m + 2} \right){{\rm{x}}^3} + 2(\left( {m + 1} \right){x^2} + \left( {m - 5} \right)x + 2m - 1\)có đồ thị \(\left( C \right)\). Có bao nhiêu giá trị nguyên của \(m\)để đồ thị \(\left( C \right)\)có hai điểm cực trị nằm về hai phía trục tung.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn B

Ta có \(y' = \left( {m + 2} \right){{\rm{x}}^2} + 4(\left( {m + 1} \right)x + \left( {m - 5} \right)\)

Đồ thị \(\left( C \right)\)có hai điểm cực trị nằm về hai phía trục tung khi và chỉ khi phương trình

\(y' = 0\)có hai nghiệm phân biệt trái dấu \( \Leftrightarrow \left( {m + 2} \right)\left( {m - 5} \right) < 0 \Leftrightarrow - 2 < m < 5\).

Suy ra có 6 giá tri nguyên của \(m\)thỏa mãn đề bài.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Chọn B

Ta có \(v = S' = - {t^2} + 8t + 9,t \in \left( {0;10} \right)\)

\(v' = - 2t + 8\). Xét \(v' = 0 \Rightarrow t = 4 \in \left( {0;10} \right)\)

Bảng biến thiên:

Media VietJack

Vậy vận tốc lớn nhất của chất điểm là \(25\left( {{\rm{m/s}}} \right)\) tại tại \(t = 4.\)

Câu 2

Lời giải

Lời giải

Chọn C

Ta loại ngay được hai hàm số ở các phương án A và B

Với hàm số ở

Ta có \(y' = - 3{x^2} - 6x\), \(y' = 0\) có hai nghiệm phân biệt \(x = 0\)\(x = - 2\) nên không thể đơn điệu trên \(\mathbb{R}\). Vậy đáp án là C

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP