Câu hỏi:

23/02/2023 1,969

Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \[y = \frac{{5x}}{{\sqrt {{x^2} + 1} }}\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn A

Xét hàm số \[y = f\left( x \right) = \frac{{5x}}{{\sqrt {{x^2} + 1} }}\]có TXĐ: \[D = \mathbb{R}\].

Đồ thị hàm số không có tiệm cận đứng.

Xét \[\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{5x}}{{\sqrt {{x^2} + 1} }} = 5\]\[\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{5x}}{{\sqrt {{x^2} + 1} }} = - 5\]

Nên đồ thị hàm số nhận \[y = 5\]\[y = - 5\]làm các tiệm cận ngang.

Vậy tổng số tiệm cận đứng và tiệm cận ngang là 2.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Chọn B

Ta có \(v = S' = - {t^2} + 8t + 9,t \in \left( {0;10} \right)\)

\(v' = - 2t + 8\). Xét \(v' = 0 \Rightarrow t = 4 \in \left( {0;10} \right)\)

Bảng biến thiên:

Media VietJack

Vậy vận tốc lớn nhất của chất điểm là \(25\left( {{\rm{m/s}}} \right)\) tại tại \(t = 4.\)

Câu 2

Hàm số nào sau đây nghịch biến trên \[\mathbb{R}\]?

Lời giải

Lời giải

Chọn C

Ta loại ngay được hai hàm số ở các phương án A và B

Với hàm số ở

Ta có \(y' = - 3{x^2} - 6x\), \(y' = 0\) có hai nghiệm phân biệt \(x = 0\)\(x = - 2\) nên không thể đơn điệu trên \(\mathbb{R}\). Vậy đáp án là C

Câu 3

Cho hình chóp \[S.ABC\]\[SA\]vuông góc mặt đáy, tam giác \[ABC\]vuông tại \[A\], \[SA = 2{\rm{cm}}\], \[AB = 4{\rm{cm}}\], \[AC = 3{\rm{cm}}\]. Tính thể tích khối chóp \(S.ABC\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Media VietJack

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Giao điểm đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số \(y = \frac{{2x - 1}}{{x - 2}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay