Câu hỏi:

23/02/2023 1,338

Có bao nhiêu giá trị nguyên dương của tham số \(m\)để đồ thị hàm số \(y = \frac{{x - 1}}{{{x^2} - 8x + m}}\)có 3 đường tiệm cận?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn A

Ta có \(\mathop {{\rm{lim}}}\limits_{x \to - \infty } \frac{{x - 1}}{{{x^2} - 8x + m}} = \mathop {{\rm{lim}}}\limits_{x \to + \infty } \frac{{x - 1}}{{{x^2} - 8x + m}} = 0\) nên hàm số có một tiện cận ngang \(y = 0\).

Hàm số có 3 đường tiệm cận khi và chỉ khi hàm số có hai đường tiệm cận đứng \( \Leftrightarrow \)phương trình \({x^2} - 8x + m = 0\) có hai nghiệm phân biệt khác \(1 \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{\rm{\Delta }}' = 16 - m > 0}\\{m - 7 \ne 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m < 16}\\{m \ne 7}\end{array}} \right.\).

Kết hợp với điều kiện \(m\)nguyên dương ta có \(m \in \left\{ {1;2;3;..;6;8;..;15} \right\}\). Vậy có \(14\) giá trị của \(m\) thỏa mãn đề bài.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Chọn B

Ta có \(v = S' = - {t^2} + 8t + 9,t \in \left( {0;10} \right)\)

\(v' = - 2t + 8\). Xét \(v' = 0 \Rightarrow t = 4 \in \left( {0;10} \right)\)

Bảng biến thiên:

Media VietJack

Vậy vận tốc lớn nhất của chất điểm là \(25\left( {{\rm{m/s}}} \right)\) tại tại \(t = 4.\)

Câu 2

Lời giải

Lời giải

Chọn C

Ta loại ngay được hai hàm số ở các phương án A và B

Với hàm số ở

Ta có \(y' = - 3{x^2} - 6x\), \(y' = 0\) có hai nghiệm phân biệt \(x = 0\)\(x = - 2\) nên không thể đơn điệu trên \(\mathbb{R}\). Vậy đáp án là C

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP