Câu hỏi:
23/02/2023 188Hàm số \(f\left( x \right) = {x^2}\ln x\) đạt cực trị tại điểm
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A
Cho hàm số \(y = f\left( x \right)\)
Hàm số đạt cực tiểu tại điểm \(x = {x_0} \Leftrightarrow \left\{ \begin{array}{l}f'\left( {{x_0}} \right) = 0\\f'\left( {{x_0}} \right) > 0\end{array} \right.\)
Hàm số đạt cực đại tại điểm \(x = {x_0} \Leftrightarrow \left\{ \begin{array}{l}f'\left( {{x_0}} \right)\\f''\left( {{x_0}} \right) < 0\end{array} \right.\)
Cách giải:
TXĐ: \(D = \left( {0; + \infty } \right)\)
\(f\left( x \right) = {x^2}\ln x \Rightarrow f'\left( x \right) = 2x\ln x + {x^2}.\frac{1}{x} = 2x\ln x + x\)
\(f'\left( x \right) = 0 \Leftrightarrow 2x\ln x + x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\left( L \right)\\\ln x = - \frac{1}{2}\end{array} \right. \Leftrightarrow x = {e^{ - \frac{1}{2}}} = \frac{1}{{\sqrt e }}\)
\(f''\left( x \right) = 2\ln x + 2x.\frac{1}{x} + 1 = 2\ln x + 3,\,\,\, \Rightarrow f''\left( {\frac{1}{{\sqrt e }}} \right) = 2.\frac{{ - 1}}{2} + 3 = 2 > 0 \Rightarrow \) Hàm số đạt cực tiểu tại \(x = \frac{1}{{\sqrt e }}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tập xác định của hàm số \(y = {\log _2}\left( {{x^2} - 3x + 2} \right)\) là:
Câu 2:
Đồ thị sau đây là của hàm số \[y = {x^3} - 3x + 1\]. Với giá trị nào của m thì phương trình \({x^3} - 3x - m = 0\) có ba nghiệm phân biệt?
Câu 3:
Khối lập phương ABCD.A’B’C’D’ có độ dài đoạn \(AB' = 2a\). Thể tích của khối đó là
Câu 4:
Tập hợp tất cả các số thực m để hàm số \(y = {x^3} + 5{x^2} - 4mx - 3\) đồng biến trên R là
Câu 6:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}{\left( {x + 1} \right)^2}\left( {2x - 1} \right)\). Khi đó số điểm cực trị của hàm số đã cho là bao nhiêu?
Câu 7:
Cho tứ diện ABCD, có \(AB = AC = AD = a,\,\,\,BAD = {90^0};\,\,DAC = {60^0};\,\,CAB = {120^0}\). Thể tích tứ diện ABCD là
về câu hỏi!