Câu hỏi:
23/02/2023 379Cho hình chóp S.ABCD có \(SA \bot \left( {ABCD} \right)\), ABCD là hình chữ nhật với \(AB = a,\,\,BC = 2a\) và \(SA = 3a\). Thể tích của khối cầu ngoại tiếp hình chóp là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án C
Phương pháp:
- Xác định tâm mặt cầu ngoại tiếp hình chóp.
- Tính bán kính mặt cầu.
- Tính thể tích khối cầu: \(V = \frac{4}{3}\pi {R^3}\)
Cách giải:
Gọi O là tâm của hình chữ nhật ABCD, I là trung điểm của SC
Ta có: IO là đường trung bình của tam giác SAC \( \Rightarrow IO//SA\)
Mà \(SA \bot \left( {ABCD} \right) \Rightarrow IO \bot \left( {ABCD} \right)\)
\( \Rightarrow IA = IB = IC = ID\,\,\left( 1 \right)\)
Tam giác SAC vuông tại A, I là trung điểm của SC
\( \Rightarrow IS = IC = IA\,\,\left( 2 \right)\)
Từ (1) và (2) suy ra I là tâm mặt cầu ngoại tiếp khối chóp S.ABCD và bán kính mặt cầu là \(R = \frac{{SC}}{2}\)
ABCD là hình chữ nhật \( \Rightarrow AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{a^2} + {{\left( {2a} \right)}^2}} = a\sqrt 5 \)
Tam giác SAC vuông tại A \( \Rightarrow SC = \sqrt {S{A^2} + A{C^2}} = \sqrt {{{\left( {3a} \right)}^2} + {{\left( {\sqrt 5 a} \right)}^2}} = a\sqrt {14} \)
\( \Rightarrow R = \frac{{SC}}{2} = \frac{{a\sqrt {14} }}{2}\)
Thể tích của khối cầu ngoại tiếp hình chóp là: \(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {\left( {\frac{{a\sqrt {14} }}{2}} \right)^3} = \frac{{7\pi \sqrt {14} .{a^3}}}{3}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tập xác định của hàm số \(y = {\log _2}\left( {{x^2} - 3x + 2} \right)\) là:
Câu 2:
Đồ thị sau đây là của hàm số \[y = {x^3} - 3x + 1\]. Với giá trị nào của m thì phương trình \({x^3} - 3x - m = 0\) có ba nghiệm phân biệt?
Câu 3:
Khối lập phương ABCD.A’B’C’D’ có độ dài đoạn \(AB' = 2a\). Thể tích của khối đó là
Câu 4:
Tập hợp tất cả các số thực m để hàm số \(y = {x^3} + 5{x^2} - 4mx - 3\) đồng biến trên R là
Câu 6:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}{\left( {x + 1} \right)^2}\left( {2x - 1} \right)\). Khi đó số điểm cực trị của hàm số đã cho là bao nhiêu?
Câu 7:
Cho tứ diện ABCD, có \(AB = AC = AD = a,\,\,\,BAD = {90^0};\,\,DAC = {60^0};\,\,CAB = {120^0}\). Thể tích tứ diện ABCD là
về câu hỏi!