Cho tứ diện SABC có \(SA = 4a\) và SA vuông góc với mặt phẳng (ABC). Tam giác ABC vuông tại B, có \[AB = a,{\rm{ }}BC = 3a\]. Diện tích mặt cầu ngoại tiếp tứ diện SABC bằng
Cho tứ diện SABC có \(SA = 4a\) và SA vuông góc với mặt phẳng (ABC). Tam giác ABC vuông tại B, có \[AB = a,{\rm{ }}BC = 3a\]. Diện tích mặt cầu ngoại tiếp tứ diện SABC bằng
Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
- Xác định tâm mặt cầu.
- Tính diện tích mặt cầu: \(S = 4\pi {R^2}\)
Cách giải:
Gọi O, I lần lượt là trung điểm của AC, SC.
Tam giác ABC vuông tại B \( \Rightarrow \) O là tâm đường tròn ngoại tiếp tam giác ABC.

IO là đường trung bình của tam giác SAC \( \Rightarrow IO//SA\)
Mà \(SA \bot \left( {ABCD} \right) \Rightarrow IO \bot \left( {ABC} \right) \Rightarrow IA = IB = IC\,\,\,\left( 1 \right)\)
Tam giác SAC vuông tại A \( \Rightarrow IA = IS = IC\,\,\left( 2 \right)\)
Từ (1) và (2) suy ra I là tâm mặt cầu ngoại tiếp tứ diện SABC và bán kính mặt cầu \(R = \frac{{SA}}{2}\)
\(\Delta ABC\) vuông tại B \( \Rightarrow AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{a^2} + {{\left( {3a} \right)}^2}} = a\sqrt {10} \)
\(\Delta SAC\) vuông tại A \( \Rightarrow SC = \sqrt {S{A^2} + A{C^2}} = \sqrt {{{\left( {4a} \right)}^2} + {{\left( {\sqrt {10} a} \right)}^2}} = a\sqrt {26} \)
Diện tích mặt cầu ngoại tiếp tứ diện SABC bằng \(S = 4\pi {R^2} = 4\pi .{\left( {a\sqrt {26} } \right)^2} = 104\pi {a^2}\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A
Phương pháp:
Hàm số \(y = {\log _a}f\left( x \right)\,\left( {0 < a \ne 1} \right)\) xác định \( \Leftrightarrow f\left( x \right) > 0\)
Cách giải:
ĐKXĐ: \({x^2} - 3x + 2 > 0 \Leftrightarrow \left[ \begin{array}{l}x > 2\\x < 1\end{array} \right. \Rightarrow \) TXĐ: \(D = R\backslash \left[ {1;2} \right]\)
Lời giải
Đáp án A
Phương pháp:
Xác định số điểm mà tại đó đạo hàm \(f'\left( x \right)\) đổi dấu.
Cách giải:
\(f'\left( x \right) = {x^2}{\left( {x + 1} \right)^2}\left( {2x - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 1\\x = \frac{1}{2}\end{array} \right.\)
Trong đó \(f'\left( x \right)\) chỉ đổi dấu tại điểm \(x = \frac{1}{2} \Rightarrow \) Hàm số đã cho có 1 điểm cực trị.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.