Câu hỏi:
23/02/2023 423Cho tứ diện SABC có \(SA = 4a\) và SA vuông góc với mặt phẳng (ABC). Tam giác ABC vuông tại B, có \[AB = a,{\rm{ }}BC = 3a\]. Diện tích mặt cầu ngoại tiếp tứ diện SABC bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
- Xác định tâm mặt cầu.
- Tính diện tích mặt cầu: \(S = 4\pi {R^2}\)
Cách giải:
Gọi O, I lần lượt là trung điểm của AC, SC.
Tam giác ABC vuông tại B \( \Rightarrow \) O là tâm đường tròn ngoại tiếp tam giác ABC.
IO là đường trung bình của tam giác SAC \( \Rightarrow IO//SA\)
Mà \(SA \bot \left( {ABCD} \right) \Rightarrow IO \bot \left( {ABC} \right) \Rightarrow IA = IB = IC\,\,\,\left( 1 \right)\)
Tam giác SAC vuông tại A \( \Rightarrow IA = IS = IC\,\,\left( 2 \right)\)
Từ (1) và (2) suy ra I là tâm mặt cầu ngoại tiếp tứ diện SABC và bán kính mặt cầu \(R = \frac{{SA}}{2}\)
\(\Delta ABC\) vuông tại B \( \Rightarrow AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{a^2} + {{\left( {3a} \right)}^2}} = a\sqrt {10} \)
\(\Delta SAC\) vuông tại A \( \Rightarrow SC = \sqrt {S{A^2} + A{C^2}} = \sqrt {{{\left( {4a} \right)}^2} + {{\left( {\sqrt {10} a} \right)}^2}} = a\sqrt {26} \)
Diện tích mặt cầu ngoại tiếp tứ diện SABC bằng \(S = 4\pi {R^2} = 4\pi .{\left( {a\sqrt {26} } \right)^2} = 104\pi {a^2}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tập xác định của hàm số \(y = {\log _2}\left( {{x^2} - 3x + 2} \right)\) là:
Câu 2:
Đồ thị sau đây là của hàm số \[y = {x^3} - 3x + 1\]. Với giá trị nào của m thì phương trình \({x^3} - 3x - m = 0\) có ba nghiệm phân biệt?
Câu 3:
Khối lập phương ABCD.A’B’C’D’ có độ dài đoạn \(AB' = 2a\). Thể tích của khối đó là
Câu 4:
Tập hợp tất cả các số thực m để hàm số \(y = {x^3} + 5{x^2} - 4mx - 3\) đồng biến trên R là
Câu 6:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}{\left( {x + 1} \right)^2}\left( {2x - 1} \right)\). Khi đó số điểm cực trị của hàm số đã cho là bao nhiêu?
Câu 7:
Cho tứ diện ABCD, có \(AB = AC = AD = a,\,\,\,BAD = {90^0};\,\,DAC = {60^0};\,\,CAB = {120^0}\). Thể tích tứ diện ABCD là
về câu hỏi!