Câu hỏi:
23/02/2023 201Hình lăng trụ đứng ABC.A’B’C’, đáy là tam giác ABC vuông tại A, có \[AB = a,{\rm{ }}BC = 2a\], góc giữa AC’ và mặt phẳng đáy bằng \({60^0}\). Hình trụ ngoại tiếp hình lăng trụ ABC.A’B’C’ có diện tích toàn phần là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án D
Phương pháp:
Diện tích xung quanh của hình trụ: \({S_{xq}} = 2\pi Rh\)
Diện tích toàn phần của hình trụ:
Cách giải:
Ta có: ABC.A’B’C’ là lăng trụ đứng \( \Rightarrow AA' \bot \left( {A'B'C'} \right)\)
\( \Rightarrow \left( {AC';\left( {A'B'C'} \right)} \right) = \left( {AC';A'C'} \right) = AC'A' = {60^0}\)
Tam giác ABC vuông tại A \( \Rightarrow AC = \sqrt {B{C^2} - A{B^2}} = \sqrt {{{\left( {2a} \right)}^2} - {a^2}} = a\sqrt 3 \)
Tam giác AA’C’ vuông tại A’
\( \Rightarrow AA' = A'C'.tan{60^0} = AC.\tan {60^0} = a\sqrt 3 .\sqrt 3 = 3a\)
Hình trụ ngoại tiếp hình lăng trụ ABC.A’B’C’ có đường cao \(h = AA' = 3a\), bán kính đáy \(R = \frac{{BC}}{2} = \frac{{2a}}{2} = a\)
Diện tích toàn phần của hình trụ là: \({S_{tp}} = 2\pi Rh + 2\pi {R^2} = 2\pi .a.3a + 2\pi {a^2} = 8\pi {a^2}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tập xác định của hàm số \(y = {\log _2}\left( {{x^2} - 3x + 2} \right)\) là:
Câu 2:
Đồ thị sau đây là của hàm số \[y = {x^3} - 3x + 1\]. Với giá trị nào của m thì phương trình \({x^3} - 3x - m = 0\) có ba nghiệm phân biệt?
Câu 3:
Khối lập phương ABCD.A’B’C’D’ có độ dài đoạn \(AB' = 2a\). Thể tích của khối đó là
Câu 4:
Tập hợp tất cả các số thực m để hàm số \(y = {x^3} + 5{x^2} - 4mx - 3\) đồng biến trên R là
Câu 6:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}{\left( {x + 1} \right)^2}\left( {2x - 1} \right)\). Khi đó số điểm cực trị của hàm số đã cho là bao nhiêu?
Câu 7:
Cho tứ diện ABCD, có \(AB = AC = AD = a,\,\,\,BAD = {90^0};\,\,DAC = {60^0};\,\,CAB = {120^0}\). Thể tích tứ diện ABCD là
về câu hỏi!