Hình lăng trụ đứng ABC.A’B’C’, đáy là tam giác ABC vuông tại A, có \[AB = a,{\rm{ }}BC = 2a\], góc giữa AC’ và mặt phẳng đáy bằng \({60^0}\). Hình trụ ngoại tiếp hình lăng trụ ABC.A’B’C’ có diện tích toàn phần là
Hình lăng trụ đứng ABC.A’B’C’, đáy là tam giác ABC vuông tại A, có \[AB = a,{\rm{ }}BC = 2a\], góc giữa AC’ và mặt phẳng đáy bằng \({60^0}\). Hình trụ ngoại tiếp hình lăng trụ ABC.A’B’C’ có diện tích toàn phần là
Quảng cáo
Trả lời:
Đáp án D

Phương pháp:
Diện tích xung quanh của hình trụ: \({S_{xq}} = 2\pi Rh\)
Diện tích toàn phần của hình trụ:
Cách giải:
Ta có: ABC.A’B’C’ là lăng trụ đứng \( \Rightarrow AA' \bot \left( {A'B'C'} \right)\)
\( \Rightarrow \left( {AC';\left( {A'B'C'} \right)} \right) = \left( {AC';A'C'} \right) = AC'A' = {60^0}\)
Tam giác ABC vuông tại A \( \Rightarrow AC = \sqrt {B{C^2} - A{B^2}} = \sqrt {{{\left( {2a} \right)}^2} - {a^2}} = a\sqrt 3 \)
Tam giác AA’C’ vuông tại A’
\( \Rightarrow AA' = A'C'.tan{60^0} = AC.\tan {60^0} = a\sqrt 3 .\sqrt 3 = 3a\)
Hình trụ ngoại tiếp hình lăng trụ ABC.A’B’C’ có đường cao \(h = AA' = 3a\), bán kính đáy \(R = \frac{{BC}}{2} = \frac{{2a}}{2} = a\)
Diện tích toàn phần của hình trụ là: \({S_{tp}} = 2\pi Rh + 2\pi {R^2} = 2\pi .a.3a + 2\pi {a^2} = 8\pi {a^2}\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A
Phương pháp:
Hàm số \(y = {\log _a}f\left( x \right)\,\left( {0 < a \ne 1} \right)\) xác định \( \Leftrightarrow f\left( x \right) > 0\)
Cách giải:
ĐKXĐ: \({x^2} - 3x + 2 > 0 \Leftrightarrow \left[ \begin{array}{l}x > 2\\x < 1\end{array} \right. \Rightarrow \) TXĐ: \(D = R\backslash \left[ {1;2} \right]\)
Lời giải
Đáp án A
Phương pháp:
Xác định số điểm mà tại đó đạo hàm \(f'\left( x \right)\) đổi dấu.
Cách giải:
\(f'\left( x \right) = {x^2}{\left( {x + 1} \right)^2}\left( {2x - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 1\\x = \frac{1}{2}\end{array} \right.\)
Trong đó \(f'\left( x \right)\) chỉ đổi dấu tại điểm \(x = \frac{1}{2} \Rightarrow \) Hàm số đã cho có 1 điểm cực trị.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.